精英家教网 > 高中数学 > 题目详情
若数列{an}是等差数列,a3=7,S6=51,则a9等于(  )
A、24B、25C、26D、27
分析:根据等差数列的通项公式及前n项和的公式化简a3=7和S6=51,得到关于首项和公差的两个方程,联立即可求出首项和公差,然后根据等差数列的通项公式即可求出a9的值.
解答:解:设等差数列的公差为d,由a3=7,S6=51,得到
a1+2d=7①
6a1+
6×5
2
d=51②

由①得:a1=7-2d③,把③代入②得:42-12d+15d=51,即3d=9,解得d=3,把d=3代入③解得a1=1,
则a9=a1+8d=1+24=25.
故选B
点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,如果对任意n∈N*都有
an+2-an+1an+1-an
=k
(k为常数),则称{an}为等差比数列,k称为公差比,现给出下列命题:
(1)等差比数列的公差比一定不为0;
(2)等差数列一定是等差比数列;
(3)若an=-3n+2,则数列{an}是等差比数列;
(4)若等比数列是等差比数列,则其公比等于公差比.
其中正确的命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下面四个命题:(1)若数列{an}是等差数列,则数列{Cna}(C>0)为等比数列;(2)若各项为正数的数列{an}为等比数列,则数列{logcan}(C>0且≠1)为等差数列;(3)常数列既是等差数列,又是等比数列;(4)两个正数的等差中项不小于它们的等比中项,其中,真命题的个数是:(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

若在数列{an}中,对任意n∈N+,都有
an+2-an+1
an+1-an
=k
(k为常数),则称{an}为“等差比数列”.下列是对“等差比数列”的判断:
①k不可能为0
②等差数列一定是等差比数列
③等比数列一定是等差比数列
④若an=-3n+2,则数列{an}是等差比数列;
其中正确的判断是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

关于数列有下列四个判断:
①若a,b,c,d成等比数列,则a+b,b+c,c+d也成等比数列;
②若数列{an}是等比数列,则Sn,S2n-Sn,S3n-S2n…也成等比数列;
③若数列{an}既是等差数列也是等比数列,则{an}为常数列;
④数列{an}的前n项的和为Sn,且Sn=an-1(a∈R),则{an}为等差或等比数列;
⑤数列{an}为等差数列,且公差不为零,则数列{an}中不会有am=an(m≠n).
其中正确命题的序号是
②③④⑤
②③④⑤
.(请将正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}是等比数列,an>0,公比q≠1,已知lga2是lga1和1+lga4的等差中项,且a1a2a3=1.
(1)求{an}的通项公式;
(2)设bn=
1n(3-lgan)
(n∈N*),Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

同步练习册答案