精英家教网 > 高中数学 > 题目详情
(2012•北京模拟)已知平面上的四个点A、B、C、D,其中A(-2,0),B(2,0),D(x,y),如果|
AC
|=2
AD
=
1
2
(
AB
+
AC
)

求证:x2+y2=1.
分析:设点C的坐标为C(x0,y0).可从两种方向表示出向量
AD
的坐标,可得解得
x0=2x-2
y0=2y
,又由|
AC
|=
(x0+2)2+
y
2
0
=2
,代入化简消去x0,y0可得方程.
解答:解:设点C的坐标为C(x0,y0).
AC
=(x0+2,y0)
AB
=(4,0)

AB
+
AC
=(x0+6,y0)

因为
AD
=
1
2
(
AB
+
AC
)
=(
x0
2
+3,
y0
2
)
,且
AD
=(x+2,y)

x0
2
+3=x+2
y0
2
=y
解得
x0=2x-2
y0=2y

代入模长公式|
AC
|=
(x0+2)2+
y
2
0
=2
,可得(2x)2+(2y)2=4,
整理可得x2+y2=1.
故原命题得证.
点评:本题考查用坐标表示平面向量的加法运算,用坐标表示平面向量的数乘运算,以及圆的标准方程,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•北京模拟)已知a、b、c、d是公比为2的等比数列,则
2a+b
2c+d
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)函数y=
log
2
3
(3x-2)
的定义域为
2
3
,1]
2
3
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)如图,在四棱锥P-ABCD中,PA⊥平面AC,且四边形ABCD是矩形,则该四棱锥的四个侧面中是直角三角形的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)在数列{an}中,a1=
3
an+1=
1+
a
2
n
-1
an
(n∈N*)
.数列{bn}满足0<bn
π
2
,且 an=tanbn(n∈N*).
(1)求b1,b2的值;
(2)求数列{bn}的通项公式;
(3)设数列{bn}的前n项和为Sn.若对于任意的n∈N*,不等式Sn≥(-1)nλbn恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)甲、乙、丙、丁四个人进行传球练习,每次球从一个人的手中传入其余三个人中的任意一个人的手中.如果由甲开始作第1次传球,经过n次传球后,球仍在甲手中的所有不同的传球种数共有an种.
(如,第一次传球模型分析得a1=0.)
(1)求 a2,a3的值;
(2)写出 an+1与 an的关系式(不必证明),并求 an=f(n)的解析式;
(3)求 
anan+1
的最大值.

查看答案和解析>>

同步练习册答案