精英家教网 > 高中数学 > 题目详情
用数学归纳法证明等式:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*
分析:用数学归纳法证明问题的步骤是:第一步,验证当n=n0时命题成立,第二步假设当n=k时命题成立,那么再证明当n=k+1时命题也成立.关键是第二步中要充分用上归纳假设的结论,否则会导致错误.
解答:证明:(1)当n=1时,左边=12-22=-3,右边=-1×(2+1)=-3,
故左边=右边,
∴当n=1时,等式成立;
(2)假设n=k时,等式成立,
即12-22+32-…+(2k-1)2-(2k)2=-k(2k+1)成立,
那么n=k+1时,左边=12-22+32-…+(2k+1)2-(2k+2)2
=-k(2k+1)+[2(k+1)-1]2-[2(k+1)]2

=-k(2k+1)+(2k+1)2-4(k+1)2

=(2k+1)[(2k+1)-k]-4(k+1)2

=(k+1)(-2k-3)
=-(k+1)[2(k+1)+1]
综合(1)、(2)可知等式12-22+32-42++(2n-1)2-(2n)2=-n(2n+1)对于任意正整数都成立.
点评:本题考查数学归纳法的思想,应用中要注意的是要用上归纳假设.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用数学归纳法证明等式cos
x
2
•cos
x
22
•cos
x
23
•…cos
x
2n
=
sinx
2nsin
x
2n
对一切自然数n都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明等式1+2+3+…+(n+3)=
(n+3)(n+4)
2
(n∈N*)
时,第一步验证n=1时,左边应取的项是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明等式1+2+3+…+(2n+1)=(n+1)(2n+1)时,当n=1左边所得的项是1+2+3;从“k→k+1”需增添的项是
(2k+2)+(2k+3)
(2k+2)+(2k+3)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•浦东新区一模)用数学归纳法证明等式:1+a+a2+…+an+1=
1-an+21-a
(a≠1,n∈N*),验证n=1时,等式左边=
1+a+a2
1+a+a2

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明等式  
1
n+1
+
1
n+2
+…+
1
3n+1
>1(n≥2)
的过程中,由n=k递推到n=k+1时不等式左边(  )

查看答案和解析>>

同步练习册答案