【题目】已知函数
的图像相邻对称轴之间的距离是
,若将
的图像向右移
个单位,所得函数
为奇函数.
(1)求
的解析式;
(2)若函数
的零点为
,求
;
(3)若对任意
,
有解,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知某种植物每日平均增长高度
(单位:
)与每日光照时间
(单位:
)之间的关系有如下一组数据:
| 6 | 7 | 8 | 9 | 10 |
| 3.5 | 5.2 | 7 | 8.6 | 10.7 |
(1)求
关于
的回归直线方程;
(2)计算相关指数
的值,并说明回归模型拟合程度的好坏;
(3)若某天光照时间为8.5小时, 预测该天这种植物的平均增长高度(结果精确到0.1)
参考公式及数据:
,
,
,
,,
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.
非一线城市 | 一线城市 | 总计 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
总计 | 58 | 42 | 100 |
附表:
|
|
|
|
|
|
|
|
|
|
由
算得,
,
参照附表,得到的正确结论是
A. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C. 有99%以上的把握认为“生育意愿与城市级别有关”
D. 有99%以上的把握认为“生育意愿与城市级别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取
名学生的成绩进行统计分析,结果如下表:(记成绩不低于
分者为“成绩优秀”)
分数 |
|
|
|
|
|
|
|
甲班频数 |
|
|
|
|
|
|
|
乙班频数 |
|
|
|
|
|
|
|
(Ⅰ)由以上统计数据填写下面的
列联表,并判断是否有
以上的把握认为“成绩优秀与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取
人进行考核,记“成绩不优秀”的乙班人数为
,求
的分布列和期望.
参考公式:
,其中
.
临界值表
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下四个说法:
①残差点分布的带状区域的宽度越窄相关指数越小
②在刻画回归模型的拟合效果时,相关指数
的值越大,说明拟合的效果越好;
③在回归直线方程
中,当解释变量
每增加一个单位时,预报变量
平均增加
个单位;
④对分类变量
与
,若它们的随机变量
的观测值
越小,则判断“
与
有关系”的把握程度越大.
其中正确的说法是![]()
A. ①④B. ②④C. ①③D. ②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】红外线治疗仪的治疗作用是在红外线照射下,组织温度升高,毛细血管扩张,血流加快,物质代谢增强,组织细胞活力及再生能力提高,对我们身体某些疾病的治疗有着很大的贡献,某药店兼营某种红外线治疗仪,经过近
个月的营销,对销售状况进行相关数据分析,发现月销售量与销售价格有关,其统计数据如下表:
每台红外线治疗仪的销售价格: |
|
|
|
|
|
红外线治疗仪的月销售量: |
|
|
|
|
|
(1)根据表中数据求
关于
的线性回归方程;
(2)①每台红外线治疗仪的价格为
元时,预测红外线治疗仪的月销售量;(四舍五入为整数)
②若该红外线治疗仪的成本为
元/台,药店为使每月获得最大的纯收益,利用(1)中结论,问每台该种红外线治疗仪的销售价格应定为多少元?(四舍五入,精确到
元).
参考公式:回归直线方程
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】CPI是居民消费价格指数(consumer price index)的简称.居民消费价格指数,是一个反映居民家庭一般所购买的消费品价格水平变动情况的宏观经济指标.右图是根据统计局发布的2018年1月—7月的CPI 同比增长与环比增长涨跌幅数据绘制的折线图.(注:2018 年2月与2017年2月相比较,叫同比;2018年2 月与2018年1月相比较,叫环比)根据该折线图,则下列结论错误的是( )
![]()
A. 2018年1月—7月CPI 有涨有跌
B. 2018年2月—7月CPI 涨跌波动不大,变化比较平稳
C. 2018年1月—7月分别与2017年1月一7月相比较,1月CPI 涨幅最大
D. 2018年1月—7月分别与2017年1月一7月相比较,CPI 有涨有跌
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
(其中
,
,
)的图象与
轴的交点中,相邻两个交点之间的距离为
,且图象上一个最高点为
.
(1)求
的解析式;
(2)先把函数
的图象向左平移
个单位长度,然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数
的图象,试写出函数
的解析式.
(3)在(2)的条件下,若存在
,使得不等式
成立,求实数
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
的图象为C,叙述正确是( )
A.图象C关于直线
对称
B.函数
在区间
内是增函数
C.由
的图象向右平移
个单位长度可以得到图象C
D.图象C关于点
对称
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com