精英家教网 > 高中数学 > 题目详情
如果<2和|x|>同时成立,那么x的取值范围是( )
A.{x|<x<}
B.{x|x>或x<}
C.{x|x>}
D.{x|x<或x>}
【答案】分析:<2求得x的范围;再由|x|>求得 x的范围.再把这2个x的范围交集,即得所求.
解答:解:由<2可得 x<0,或 x> ①.
再由|x|>可得 x>,或x<- ②.
把①②取交集可得 x的取值范围是 {x|x>或x<},
故选B.
点评:本题主要考查分式不等式、绝对值不等式的解法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,对一切n∈N*,点(n,Sn)在函数f(x)=x2+x的图象上.
(1)求an的表达式;
(2)设An为数列{
1(an-1)(an+1)
}的前n项和,是否存在实数a
,使得不等式An<a对一切n∈N*都成立?若存在,求出a的取值范围;若不存在,请说明理由;
(3)将数列{an}依次按1项,2项循环地分为(a1),(a2,a3),(a4),(a5,a6),(a7),(a8,a9),(a10),
…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b100的值;
(4)如果将数列{an}依次按1项,2项,3项,4项循环;分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},提出同(3)类似的问题((3)应当作为特例),并进行研究,你能得到什么样的结论?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建一仓库,设AB=y km,并在公路同侧建造边长为x km的正方形无顶中转站CDEF(其中边EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且∠ABC=60°.
(1)求y关于x的函数解析式;
(2)如果中转站四周围墙造价为1万元/km,两条道路造价为3万元/km,问:x取何值时,该公司建中转站围墙和两条道路总造价M最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•太原模拟)设函数f(x)=a(x+
1
x
)+2lnx,g(x)=x2

(1)若a=
1
2
时,直线l与函数f(x)和函数g(x)的图象相切于同一点,求切线l的方程;
(2)若f(x)在[2,4]内为单调函数,求实数a的取值范围.
说明:请考生在第22、23、24三题中任选一题作答,如果多做,则按所做第一题记分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数数学公式
(1)若数学公式时,直线l与函数f(x)和函数g(x)的图象相切于同一点,求切线l的方程;
(2)若f(x)在[2,4]内为单调函数,求实数a的取值范围.
说明:请考生在第22、23、24三题中任选一题作答,如果多做,则按所做第一题记分.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}的前n项和为Sn,对一切n∈N*,点(n,Sn)在函数f(x)=x2+x的图象上.
(1)求an的表达式;
(2)设An为数列{
1
(an-1)(an+1)
}的前n项和,是否存在实数a
,使得不等式An<a对一切n∈N*都成立?若存在,求出a的取值范围;若不存在,请说明理由;
(3)将数列{an}依次按1项,2项循环地分为(a1),(a2,a3),(a4),(a5,a6),(a7),(a8,a9),(a10),
…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b100的值;
(4)如果将数列{an}依次按1项,2项,3项,4项循环;分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},提出同(3)类似的问题((3)应当作为特例),并进行研究,你能得到什么样的结论?

查看答案和解析>>

同步练习册答案