【题目】已知直线l经过点P(2,﹣1),且在两坐标轴上的截距之和为2,圆M的圆心在直线2x+y=0上,且与直线l相切于点P.
(1)求直线l的方程;
(2)求圆M的方程;
(3)求圆M在y轴上截得的弦长.
【答案】
(1)解:设直线l:
,则
∵直线l经过点P(2,﹣1),且在两坐标轴上的截距之和为2,
∴
,
∴a=1,b=1,
∴直线l的方程为x+y=1
(2)解:圆M的圆心M坐标设为(m,﹣2m),则
=1,
∴m=1,
∴圆心M(1,﹣2),半径r=
,
∴圆M的方程为:(x﹣1)2+(y+2)2=2
(3)解:令x=0,可得y=﹣2±1,
∴圆M在y轴上截得的弦长为2
【解析】(1)设直线l:
,利用直线l经过点P(2,﹣1),且在两坐标轴上的截距之和为2,建立方程组,求出a,b,即可求直线l的方程;(2)圆M的圆心M坐标设为(m,﹣2m),则
=1,求出圆心坐标与半径,即可求圆M的方程;(3)令x=0,可得y=﹣2±1.即可求圆M在y轴上截得的弦长.
科目:高中数学 来源: 题型:
【题目】已知实数λ>0,设函数f(x)=eλx﹣x.
(Ⅰ)当λ=1时,求函数f(x)的极值;
(Ⅱ)若对任意x∈(0,+∞),不等式f(x)≥0恒成立,求λ的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图所示的几何体中,
为三棱柱,且
,四边形
为平行四边形,
,
.
![]()
(1)求证:
;
(2)若
,求证:
;
(3)若
,二面角
的余弦值为若
,求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,离心率为
,设直线
的斜率是
,且
与椭圆
交于
,
两点.
(Ⅰ)求椭圆的标准方程.
(Ⅱ)若直线
在
轴上的截距是
,求实数
的取值范围.
(Ⅲ)以
为底作等腰三角形,顶点为
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lg(x2+tx+2)(t为常数,且﹣2
<t<2
).
(1)当x∈[0,2]时,求函数f(x)的最小值(用t表示);
(2)是否存在不同的实数a,b,使得f(a)=lga,f(b)=lgb,并且a,b∈(0,2).若存在,求出实数t的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是定义在
上的奇函数.
(1)当
时,
,若当
时,
恒成立,求
的最小值;
(2)若
的图像关于
对称,且
时,
,求当
时,
的解析式;
(3)当
时,
.若对任意的
,不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知任意角θ以x轴非负半轴为始边,若终边经过点P(x0 , y0),且|OP|=r(r>0),定义sicosθ=
,称“sicosθ”为“正余弦函数”.对于正余弦函数y=sicosx,有同学得到如下结论: ①该函数是偶函数;
②该函数的一个对称中心是(
,0);
③该函数的单调递减区间是[2kπ﹣
,2kπ+
],k∈Z.
④该函数的图象与直线y=
没有公共点;
以上结论中,所有正确的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.![]()
(1)证明PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com