【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数
与烧开一壶水所用时间
的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).
![]()
|
|
|
|
|
|
|
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中
,
.
(1)根据散点图判断,
与
哪一个更适宜作烧开一壶水时间
关于开关旋钮旋转的弧度数
的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立
关于
的回归方程;
(3)若旋转的弧度数
与单位时间内煤气输出量
成正比,那么
为多少时烧开一壶水最省煤气?
附:对于一组数据![]()
![]()
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为
(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为
,且在极坐标下点P
.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)若曲线C1与曲线C2交于A,B两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新冠病毒是一种通过飞沫和接触传播的变异病毒,为筛查该病毒,有一种检验方式是检验血液样本相关指标是否为阳性,对于
份血液样本,有以下两种检验方式:一是逐份检验,则需检验
次.二是混合检验,将其中
份血液样本分别取样混合在一起,若检验结果为阴性,那么这
份血液全为阴性,因而检验一次就够了;如果检验结果为阳性,为了明确这
份血液究竟哪些为阳性,就需要对它们再逐份检验,此时
份血液检验的次数总共为
次.某定点医院现取得4份血液样本,考虑以下三种检验方案:方案一,逐个检验;方案二,平均分成两组检验;方案三,四个样本混在一起检验.假设在接受检验的血液样本中,每份样本检验结果是阳性还是阴性都是相互独立的,且每份样本是阴性的概率为
.
(Ⅰ)求把2份血液样本混合检验结果为阳性的概率;
(Ⅱ)若检验次数的期望值越小,则方案越“优”.方案一、二、三中哪个最“优”?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数
与烧开一壶水所用时间
的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).
![]()
|
|
|
|
|
|
|
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中
,
.
(1)根据散点图判断,
与
哪一个更适宜作烧开一壶水时间
关于开关旋钮旋转的弧度数
的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于
的回归方程;
(3)若旋转的弧度数
与单位时间内煤气输出量
成正比,那么
为多少时烧开一壶水最省煤气?
附:对于一组数据![]()
![]()
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),曲线
的参数方程为
(
为参数).
(1)求曲线
,
的普通方程;
(2)已知点
,若曲线
,
交于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面内与两定点
,
连线的斜率之积等于
的点的轨迹,加上
、
两点所成的曲线为
.若曲线
与
轴的正半轴的交点为
,且曲线
上的相异两点
、
满足
.
(1)求曲线
的轨迹方程;
(2)求
面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,满足
,则( )
A.函数
有2个极小值点和1个极大值点
B.函数
有2个极大值点和1个极小值点
C.函数
有可能只有一个零点
D.有且只有一个实数
,使得函数
有两个零点
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com