精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,分别为线段上的点,且.

(1)证明:

(2)若,求二面角的余弦值.

【答案】(1)见证明;(2)

【解析】

(1)证明BC⊥平面SAC即可推出SC⊥平面ABC从而得到MN⊥平面SCM即可证明MNSM.(2)以C为原点,轴,轴,轴的正方向建立空间直角坐标系求出平面SAM和平面SMN的法向量,利用空间向量的夹角的余弦,求解二面角ASMN的余弦值.

(1)证明:由,且,则平面

平面,故,又,则平面

平面,故.

因为,所以,故.

又因为,所以平面.

平面,则.

(2)解:由(1)知,两两相互垂直,

如图是以为坐标原点,分别以轴,轴,轴的正方向建立空间直角坐标系

.

设平面的法向量为,则

,令,得.

设平面的法向量为

,令,则,故.

所以

由图可知二面角为钝角,

故二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,△ABC的内切圆分别与边BC、CA、AB切于点D、E、F,AD与BE交于点P,设点P关于直线EF、FD、DE的对称点分别X、Y、Z.证明:AX、BY、CZ三线共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若非负整数m、n在求和时恰进位一次(十进制下),则称有序数对(m、n)为“好的”,那么,所有和为2014的好的有序数对的个数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnx,其中a0.曲线y=fx)在点(1f1))处的切线与直线y=x+1垂直.

1)求函数fx)的单调区间;

2)求函数fx)在区间[1e]上的极值和最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,抛物线的焦点为,射线与抛物线相交于点,与其准线相交于点,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=4x与椭圆E1ab0)有一个公共焦点F.设抛物线C与椭圆E在第一象限的交点为M.满足|MF|.

1)求椭圆E的标准方程;

2)过点P1)的直线交抛物线CAB两点,直线PO交椭圆E于另一点Q.PAB的中点,求△QAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率是,过点做斜率为的直线,椭圆与直线交于两点,当直线垂直于轴时

(Ⅰ)求椭圆的方程;

(Ⅱ)当变化时,在轴上是否存在点,使得是以为底的等腰三角形,若存在求出的取值范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点的坐标分别为,三角形的两条边所在直线的斜率之积是.

(I)求点的轨迹方程;

(II)设直线方程为,直线方程为,直线,点关于轴对称,直线轴相交于点,求面积关于的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现对某市工薪阶层关于楼市限购令的态度进行调查,随机抽调了50人,他们月收入的频数分布及对楼市限购令赞成人数如下表.

月收入(单位百元)

频数

5

10

15

10

5

5

赞成人数

4

8

12

5

2

1

(1)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为月收入以5500元为分界点对楼市限购令的态度有差异;

月收入不低于55百元的人数

月收入低于55百元的人数

合计

赞成

a=______________

c=______________

______________

不赞成

b=______________

d=______________

______________

合计

______________

______________

______________

(2)试求从年收入位于(单位:百元)的区间段的被调查者中随机抽取2人,恰有1位是赞成者的概率。

参考公式:,其中.

参考值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案