【题目】已知函数
.
(1)求
的单调递增区间.
(2)在ΔABC中,角A,B,C所对的边分别为a,b,c,若f(A)=1,c=10,cosB=
,求ΔABC的中线AD的长.
科目:高中数学 来源: 题型:
【题目】已知点A(0,-2),椭圆E:
(a>b>0)的离心率为
,F是椭圆E的右焦点,直线AF的斜率为
,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
经过点
,其倾斜角为
.以原点
为极点,以
轴非负半轴为极轴,与直角坐标系
取相同的长度单位,建立极坐标系.设曲线
的极坐标方程为
.
(1)写出直线
的参数方程,若直线
与曲线
有公共点,求
的取值范围.
(2)设
为曲线
上任意一点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四面体SABC中若三条侧棱SA,SB,SC两两互相垂直,且SA=1,SB=
,SC=
,则四面体ABCD的外接球的表面积为( )
A.8πB.6πC.4πD.2π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市计划按月订购一种饮料,每天进货量相同,进货成本每瓶3元,售价每瓶5元,每天未售出的饮料最后打4折当天全部处理完
根据往年销售经验,每天需求量与当天最高气温
单位:
有关
如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间
,需求量为300瓶;如果最高气温低于20,需求量为100瓶
为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频数分布表:
最高气温 |
|
|
|
|
|
|
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
Ⅰ
求六月份这种饮料一天的需求量
单位:瓶
的分布列,并求出期望EX;
Ⅱ
设六月份一天销售这种饮料的利润为
单位:元
,且六月份这种饮料一天的进货量为
单位:瓶
,请判断Y的数学期望是否在
时取得最大值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以原点
为极点,
轴正半轴为极轴建立极坐标系.若曲线
的极坐标方程为
,
点的极坐标为
,在平面直角坐标系中,直线
经过点
,且倾斜角为
.
(1)写出曲线
的直角坐标方程以及点
的直角坐标;
(2)设直线
与曲线
相交于
,
两点,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com