【题目】下列结论中正确的是( )
A.以直角三角形的一边所在直线为旋转轴,其余各边旋转一周而形成的面所围成的几何体是一个圆锥
B.以直角梯形的一边所在直线为旋转轴,其余各边旋转一周而形成的面所围成的几何体是一个圆台
C.以平行四边形的一边所在直线为旋转轴,其余各边旋转一周而形成的面所围成的几何体是一个圆柱
D.圆面绕其一条直径所在直线旋转
后得到的几何体是一个球
科目:高中数学 来源: 题型:
【题目】已知动点P与两个定点O(0,0),A(3,0)的距离的比值为2,点P的轨迹为曲线C.
(1)求曲线C的轨迹方程
(2)过点(﹣1,0)作直线与曲线C交于A,B两点,设点M坐标为(4,0),求△ABM面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中
(1)在等差数列
中,
是
的充要条件;
(2)已知等比数列
为递增数列,且公比为
,若
,则当且仅当
;
(3)若数列
为递增数列,则
的取值范围是
;
(4)已知数列
满足
,则数列
的通项公式为![]()
(5)若
是等比数列
的前
项的和,且
;(其中
、
是非零常数,
),则A+B为零.
其中正确命题是_________(只需写出序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正四面体ABCD中,点E,F分别是AB,BC的中点,则下列命题正确的序号是______
![]()
①异面直线AB与CD所成角为90°;
②直线AB与平面BCD所成角为60°;
③直线EF∥平面ACD
④平面AFD⊥平面BCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某面包推出一款新面包,每个面包的成本价为4元,售价为10元,该款面包当天只出一炉(一炉至少15个,至多30个),当天如果没有售完,剩余的面包以每个2元的价格处理掉,为了确定这一炉面包的个数,该店记录了这款新面包最近30天的日需求量(单位:个),整理得下表:
![]()
(1)根据表中数据可知,频数
与日需求量
(单位:个)线性相关,求
关于
的线性回归方程;
(2)以30天记录的各日需求量的频率代替各日需求量的概率,若该店这款新面包出炉的个数为24,记当日这款新面包获得的总利润为
(单位:元).
(ⅰ)若日需求量为15个,求
;
(ⅱ)求
的分布列及其数学期望.
相关公式:
, ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥
中,四边形
为矩形,
为等腰三角形,
,平面
平面
,且
,
,
分别为
的中点.
![]()
(1)证明:
平面
;
(2)证明:平面
平面
;
(3)求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是( )
![]()
A. 甲的极差是29 B. 甲的中位数是24
C. 甲罚球命中率比乙高 D. 乙的众数是21
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com