【题目】设a,b是不同的直线,α,β是不同的平面,则下列四个命题中正确的是________.(填序号)
① 若a⊥b,a⊥α,则b∥α;② 若a∥α,α⊥β,则a⊥β;
③ 若a⊥β,α⊥β,则a∥α;④ 若a⊥b,a⊥α,b⊥β,则α⊥β.
【答案】④
【解析】对于①,根据
,则
或
,不一定得出
,由此可得①不正确;对于②,若a∥α,α⊥β,则可能
,因此②不正确;;对于③,
,则
或
,不一定得出
,由此可得③不正确;对于④,由
且
,可得直线
所成角或其补角等于平面
所成角,又因为
,可得直线
所成角对于
,由此可得
,所以④是真命题,综上所述,可得正确命题的序号为④,故答案为④.
【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点,
轴为正半轴建立极坐标系,圆
的极坐标方程为
,直线
的参数方程为
(t为参数).
(1)求圆
的直角坐标方程;
(2)求直线
分圆
所得的两弧程度之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
、
是两条公路(近似看成两条直线),
,在
内有一纪念塔
(大小忽略不计),已知
到直线
、
的距离分别为
、
,
=6千米,
=12千米.现经过纪念塔
修建一条直线型小路,与两条公路
、
分别交于点
、
.
(1)求纪念塔
到两条公路交点
处的距离;
(2)若纪念塔
为小路
的中点,求小路
的长.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
(
).
(1)证明:直线
过定点;
(2)若直线不经过第四象限,求
的取值范围;
(3)若直线
轴负半轴于
,交
轴正半轴于
,△
的面积为
(
为坐标原点),求
的最小值,并求此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABCA1B1C1中, CC1⊥平面ABC, AC⊥BC, AB1的中点为D,B1C∩BC1=E. 求证:
![]()
(1)DE∥平面AA1C1C;
(2)AC⊥平面BCC1B1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为增强市民的节能环保意识,郑州市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示,其中年龄分组区是:
.
![]()
(Ⅰ)求图中
的值,并根据频率分布直方图估计这500名志愿者中年龄在
岁的人数;
(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知国家某5A级大型景区对拥挤等级与每日游客数量
(单位:百人)的关系有如下规定:当![]()
时,拥挤等级为“优”;当![]()
时,拥挤等级为“良”;当![]()
时,拥挤等级为“拥挤”;当![]()
时,拥挤等级为“严重拥挤”。该景区对6月份的游客数量作出如图的统计数据:
![]()
(Ⅰ)下面是根据统计数据得到的频率分布表,求出
的值,并估计该景区6月份游客人数的平均值(同一组中的数据用该组区间的中点值作代表);
游客数量 (单位:百人) |
|
|
|
|
天数 |
|
|
|
|
频率 |
|
|
|
|
(Ⅱ)某人选择在6月1日至6月5日这5天中任选2天到该景区游玩,求他这2天遇到的游客拥挤等级均为“优”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com