精英家教网 > 高中数学 > 题目详情
3.在下列各组函数中,f(x)与g(x)表示同一函数的是(  )
A.f(x)=1,g(x)=x0B.y=x与y=$\sqrt{{x}^{2}}$C.y=x2与y=(x+1)2D.f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$

分析 根据两个函数的定义域相同,对应关系也相同,即可判断它们是相同函数.

解答 解:对于A,f(x)=1(x∈R),与g(x)=x0=1(x≠0)的定义域不同,所以不是同一函数;
对于B,y=x(x∈R),与y=$\sqrt{{x}^{2}}$=|x|(x∈R)的对应关系不同,所以不是同一函数;
对于C,y=x2(x∈R),与y=(x+1)2(x∈R)的对应关系不同,所以不是同一函数;
对于D,f(x)=|x|(x∈R),与g(x)=$\sqrt{{x}^{2}}$=|x|(x∈R)的定义域相同,对应关系也相同,所以是同一函数.
故选:D.

点评 本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知x∈R,y∈R,i为虚数单位,且[(x-2)i+y](1-i)=2008-1004i,($\frac{1+i}{1-i}$)x+y的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在正方体ABCD-A1B1C1D1中,下列几种说法不正确的是(  )
A.A1C1⊥BDB.D1C1∥AB
C.二面角A1-BC-D的平面角为45°D.AC1与平面ABCD所成的角为45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知对数函数的图象经过点(2,-1).
(1)求函数的解析式
(2)当x∈[1,4]时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平行四边形ABCD中,M为对角线AC上一点,且$\overrightarrow{{A}{M}}=\frac{1}{3}\overrightarrow{{A}C}$,设$\overrightarrow{{A}{B}}=\vec a$,$\overrightarrow{{A}D}=\vec b$,则$\overrightarrow{{M}{A}}+\overrightarrow{{M}{B}}$=(  )
A.$\frac{1}{3}\vec a+\frac{1}{3}\vec b$B.$\frac{1}{3}\vec a+\frac{2}{3}\vec b$C.$\frac{1}{3}\vec a-\frac{2}{3}\vec b$D.$\frac{1}{3}\vec a-\frac{1}{3}\vec b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C的圆心坐标为(2,0),且圆C与直线x-$\sqrt{3}$y+2=0相切,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设命题p:?x∈R,x2-4x+2m≥0(其中m为常数)则“m≥1”是“命题p为真命题”的(  )
A.充分不必要条件B.必要不充分条件
C.充分且必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)为奇函数,当x≥0时,f(x)=cosx,则$f(-\frac{π}{6})$=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知M、N分别为四面体ABCD的面BCD与面ACD的重心,且G为AM上一点,且GM:GA=1:3,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,$\overrightarrow{AD}$=$\overrightarrow{c}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$表示$\overrightarrow{BG}$,$\overrightarrow{BN}$.

查看答案和解析>>

同步练习册答案