精英家教网 > 高中数学 > 题目详情

如图,P—ABCD是正四棱锥,是正方体,其中 

(1)求证:

(2)求平面PAD与平面所成的锐二面角的余弦值;

(3)求到平面PAD的距离

(1)证明见解析(2)(3)


解析:

解法一:以轴,轴,轴建立空间直角坐标系…………1分

(1)设E是BD的中点,P—ABCD是正四棱锥,∴ 

, ∴  ∴

      即

(2)设平面PAD的法向量是

 

   取,又平面的法向量是     ∴

(3)   ∴到平面PAD的距离

解法二:

(1)设AC与BD交点为O,连PO;∵P—ABCD是正四棱锥,∴PO⊥面ABCD,

∴AO为PA在平面ABCD上的射影, 又ABCD为正方形,∴AO⊥BD,由三垂线定理知PA⊥BD,而BD∥B1D1;∴ 

(2)由题意知平面PAD与平面所成的锐二面角为二面角A-PD-B;

∵AO⊥面PBD,过O作OE垂直PD于E,连AE,

则由三垂线定理知∠AEO为二面角A-PD-B的平面角;     可以计算得, 

(3)设B1C1与BC的中点分别为M、N;则到平面PAD的距离为M到平面PAD的距离;

由VM-PAD=VP-ADM求得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,P-ABCD是正四棱锥,ABCD-A1B1C1D1是正方体,其中AB=2,PA=
6

(1)求证:PA⊥B1D1
(2)求平面PAD与平面BDD1B1所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,P-ABCD是正四棱锥,ABCD-A1B1C1D1是正方体,其中AB=2,PA=
6
.平面PAD与平面BDD1B1所成的锐二面角θ的余弦值为(  )
A、
10
10
B、
5
5
C、
15
5
D、
10
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P-ABCD是正四棱锥,ABCD-A1B1C1D1是正方体,其中AB=2,PA=
6
,则B1到平面PAD的距离为
6
5
5
6
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P-ABCD是正四棱锥,PA=
3
,AB=2.
(1)求证:平面PAC⊥平面PBD;
(2)求该四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P-ABCD是底面水平放置且△PAB在正面的正四棱锥,已知PA=
3
,AB=2.
(1)画出这个正四棱锥的正视图(或称主视图),并直接标明正视图各边的长;
(2)求该四棱锥的体积.

查看答案和解析>>

同步练习册答案