精英家教网 > 高中数学 > 题目详情
设点O是△ABC的三边中垂线的交点,且AC2-2AC+AB2=0,则
BC
AO
的范围是
[-
1
4
,2)
[-
1
4
,2)
分析:先利用余弦定理,确定AB,AC,利用向量的数量积,化简
BC
AO
,再利用配方法确定其范围,即可得到结论.
解答:解:设圆的半径为R,∠AOB为α,∠AOC为β,则
AB2=AO2+BO2-2AO×BOcosα=2R2-2R2 cosα,AC2=AO2+CO2-2AO×COcosβ=2R2-2R2cosβ
AO
BC
=
AO
•(
BO
+
OC
)
=
AO
BO
+
AO
OC
=R2 cosα-R2cosβ=
AC2-AB2
2

∵AC2-2AC+AB2=0,∴
AC2-AB2
2
=AC2-AC=(AC-
1
2
)
2
-
1
4

∵AC2-2AC=-AB2<0,0<AC<2
-
1
4
AC2-AB2
2
<2

BC
AO
的范围是[-
1
4
,2)
故答案为:[-
1
4
,2).
点评:本题考查数量积运算,考查三角形的外心,考查配方法求函数的值域,有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(1)设点O是AB的中点,证明:OC∥平面A1B1C1
(2)求二面角B-AC-A1的大小;
(3)求此几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3
(Ⅰ)设点O是AB的中点,证明:OC∥平面A1B1C1
(Ⅱ)求二面角B-AC-A1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(I)设点O是AB的中点,证明:OC∥平面A1B1C1
(II)求此几何体的体积;
(Ⅲ)点F为AA1上一点,若BF⊥平面COB1,求AF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

右图是一个直三棱柱(以A1B1C1为底面),被一平面所截得的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=900,AA1=4,BB1=2,CC1=3
(I)设点O是AB的中点,证明:OC∥平面A1B1C1
(II)求AB与平面AA1CC1所成角的大小.

查看答案和解析>>

科目:高中数学 来源:2015届海南琼海嘉积中学高一下学期教学监测(二)理数学卷(解析版) 题型:解答题

如图是一个直三棱柱(以A1B1C1为底面)被一平面

所截得到的几何体,截面为ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,

AAl=4,BBl=2,CCl=3,且设点O是AB的中点。

(1)证明:OC∥平面A1B1C1

(2)求异面直线OC与AlBl所成角的正切值。

 

查看答案和解析>>

同步练习册答案