【题目】已知函数
,下列结论中不正确的是( )
A.
的图象关于点
中心对称
B.
的图象关于直线
对称
C.
的最大值为![]()
D.
既是奇函数,又是周期函数
【答案】C
【解析】试题分析:对于A中,因为
,
则
,所以
,可得
的图象关于
中心对称,故A正确;对于B,因为![]()
,
,所以
,可得
的图象关于
中心对称,故B正确;对于C,化简得![]()
,令
,因为
的导数
,所以当
或
时,
,函数
为减函数;当
时,
,函数
为增函数,因此函数
的最大值为
或
时的函数值,结合
,可得
的最大值为
,由此可得
的最大值为
,而不是
,所以不正确;对于D,因为
,所以
是奇函数,因为
,所以
为函数的一个周期,得
为周期,可得
既是奇函数,又是周期函数,所以正确,故选D.
【方法点晴】本题主要考查了三角函数的图象与性质及三角函数的最值问题,其中解答中涉及到三角函数的解析式、三角函数的奇偶性、三角函数的单调性和周期性等知识点的综合考查,着重考查了三角恒等变换公式、利用导数研究函数的单调性和函数的图象的对称性等知识,体现了分析问题和解答问题的能力,属于中档试题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+3x2﹣9x+m
(1)求函数f(x)=x3+3x2﹣9x+m的单调递增区间;
(2)若函数f(x)在区间[0,2]上的最大值12,求函数f(x)在该区间上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,PA⊥底面ABCD,AB⊥AC,AB=1,BC=2,PA=
,E为BC的中点. ![]()
(1)证明:PE⊥ED;
(2)求二面角E﹣PD﹣A的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0或y=f(x)的“自公切线”.下列方程:
①x2﹣y2=1;
②y=x2﹣|x|;
③y=3sinx+4cosx;
④|x|+1= ![]()
对应的曲线中存在“自公切线”的有( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在直角坐标
中,以
为极点,
轴正半轴为极轴建立极坐标系,曲线
的参数方程为:
,曲线
的极坐标方程: ![]()
(1)写出
和
的普通方程;
(2)若
与
交于两点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
的参数方程为
(
,
为参数).以坐标原点
为极点,
轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线
的极坐标方程为
.
(1)当
时,求曲线
上的点到直线
的距离的最大值;
(2)若曲线
上的所有点都在直线
的下方,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A,B两地的距离是120km,按交通法规规定,A,B两地之间的公路车速应限制在50~100km/h,假设汽油的价格是6元/升,以xkm/h速度行驶时,汽车的耗油率为
,司机每小时的工资是36元,那么最经济的车速是多少?如果不考虑其他费用,这次行车的总费用是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一元二次不等式﹣x2+x+2>0的解集是( )
A.{x|x<﹣1或x>2}
B.{x|x<﹣2或x>1}
C.{x|﹣1<x<2}
D.{x|﹣2<x<1}
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com