(本题满分14分)
如图所示,已知曲线
与曲线
交于点O、A,直线
(0<t≤1)与曲线C1、C2分别相交于点D、B,连接OD、DA、AB。![]()
(1)写出曲边四边形ABOD(阴影部分)的面积S与t的函数关系式
;
(2)求函数
在区间
上的最大值。
解:(1)由![]()
![]()
解得
或
(2分)∴O(0,0),A(a,a2)。
又由已知得B(t,-t2+2at),D(t,t2),
∴
…… 6分
(2)
=
t2-2at+a2,令
=0,即
t2-2at+a2=0。解得t=(2-
)a或t=(2+
)a.
∵0<t≤1,a>1, ∴t=(2+
)a应舍去。 即t=(2-
)a 8分
若(2-
)a≥1,即a≥
时,∵0<t≤1,∴
≥0。
∴
在区间
上单调递增,S的最大值是
=a2-a+
. 10分
若(2-
)a<1, 即1<a<
时,
当0<t<(2-
)a时,
.
当(2-
)a<t≤1时,
.
∴
在区间(0, (2-
)a]上单调递增,在区间[(2-
)a,1]上单调递减。
∴
=(2-
)a是极大值点,也是最大值点 12分
∴
的最大值是f((2-
)a)=
[ (2-
)a]3-a[(2-
)a]2+a2(2-
)a=
.13分
解析
科目:高中数学 来源: 题型:
(本题满分14分)如图2,为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪,另外△AEF内部有一文物保护区域不能占用,经过测量AB=100m,BC=80m,AE=30m,AF=20m,应该如何设计才能使草坪面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)
如图,已知直三棱柱ABC—A1B1C1,
,E是棱CC1上动点,F是AB中点,![]()
(1)求证:
;
(2)当E是棱CC1中点时,求证:CF//平面AEB1;
(3)在棱CC1上是否存在点E,使得二面角A—EB1—B的大小是45°,若存在,求CE的长,若不存在,请说明理由。
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省济宁市高三第二次月考文科数学 题型:解答题
(本题满分14分)如图,在四棱锥E-ABCD中,底面ABCD为正方形, AE⊥平面CDE,已知AE=3,DE=4.
![]()
(Ⅰ)若F为DE的中点,求证:BE//平面ACF;
(Ⅱ)求直线BE与平面ABCD所成角的正弦值
查看答案和解析>>
科目:高中数学 来源:2011年福建省高二上学期期末考试数学理卷 题型:解答题
(本题满分14分)如图,正方形
、
的边长都是1,平面![]()
平面
,点
在
上移动,点
在
上移动,若
(
)
![]()
(I)求
的长;
(II)
为何值时,
的长最小;
(III)当
的长最小时,求面
与面
所成锐二面角余弦值的大小.
查看答案和解析>>
科目:高中数学 来源:杭州市2010年第二次高考科目教学质量检测 题型:解答题
(本题满分14分)如图,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,
,又E、F分别是C1A和C1B的中点。
(1)求证:EF//平面ABC;
(2)求证:平面
平面C1CBB1;
(3)求异面直线AB与EB1所成的角。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com