【题目】如图1,矩形
中,
,将
沿
折起,得到如图
所示的四棱锥
,其中
.
(1)证明:平面
平面
;
(2)求平面
与平面
所成锐二面角的余弦值.
![]()
【答案】(1)见解析;(2)![]()
【解析】试题分析:(1)
的中点
,连接
,
.易知,
,又求得
,
,所以
,得
所以
平面
,平面
平面
.
(2)建立空间直角坐标系,求得平面
的法向量
.平面
的法向量
,所以求得二面角的余弦值为
。
试题解析:
(1)在图2中取
的中点
,连接
,
.由条件可知图1中四边形
为正方形,则有
,且可求得
.
在
中,
,
,
,由余弦定理得
.
在
中,
,所以
,即
.
由于
,
平面
,
且
,
,所以
平面
.
又
平面
,故平面
平面
.
(2)如图,以
为坐标原点,以平行于
的方向为
轴,平行于
的方向为
轴,建立空间直角坐标系.由题设条件,可得
,
,
,
.
由(1)得
平面
,可求得
点坐标为
,
所以
,
,设平面
的法向量为
,由
及
得
令
,由此可得
.
由于
,
,设平面
的法向量为
,由
及
得
令
,由此可得![]()
所以![]()
则平面
与平面
所成锐二面角的余弦值为
.
![]()
科目:高中数学 来源: 题型:
【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(2)根据表中数据,在调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
年级名次 | 1~50 | 951~1000 |
近视 | 41 | 32 |
不近视 | 9 | 18 |
附:P(K2≥3.841=0.05)K2=
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=cos(ωx+φ)(ω>0,﹣
<φ<0)的最小正周期为π,且f(
)=
.
(1)求ω和φ的值;
(2)求f(x)的单调递增区间;
(3)求f(x)在[0,
]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax3﹣6x2+1,若f(x)存在唯一的零点x0 , 且x0>0,则a的取值范围是( )
A.(﹣∞,﹣4)
B.(4,+∞)
C.(﹣∞,﹣4
)
D.(4
,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|y=
},B={x|log2x≤1},则A∩B=( )
A.{x|﹣3≤x≤1}
B.{x|0<x≤1}
C.{x|﹣3≤x≤2}
D.{x|x≤2}
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com