【题目】大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方,盲拧在外人看来很神奇,其实原理是十分简单的,要学会盲拧也是很容易的.根据调查显示,是否喜欢盲拧魔方与性别有关.为了验证这个结论,某兴趣小组随机抽取了50名魔方爱好者进行调查,其中喜欢盲拧的30人中男性22人,女性人数正好等于男性不喜欢盲拧人数.
(1)请完成下面的
列联表
喜欢盲拧 | 不喜欢盲拧 | 总计 | |
男 | |||
女 | |||
总计 |
并判断能否在犯错误的概率不超过0.025的前提下认为是否喜欢盲拧与性别有关?
(2)现邀请其中20名男生参加盲拧三阶魔方比赛,其完成情况如下表所示.
成功完成时间(分钟) |
|
|
|
|
人数 | 10 | 3 | 5 | 2 |
现从表中成功完成时间在
和
这两组内的7名男生中任意抽取2人对他们的盲拧情况进行视频记录,求2人成功完成时间恰好在同一组内的概率.
附参考公式及参考数据:
,其中![]()
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)见解析;(2)![]()
【解析】
(1)由题意,得出
的列联表,利用独立性检验的公式,求得
的值,即可得到结论.
(2)由7名男生中任意抽取2人共
种结果,其中2人成功完成时间恰好在同一组内分为两种情形,共有
种结果,利用古典概型的概率计算公式,即可求解.
(1)由题意,可得
的列联表:
喜欢盲拧 | 不喜欢盲拧 | 总计 | |
男 | 22 | 8 | 30 |
女 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
由表中数据可得,![]()
故能在犯错误的概率不超过0.025的前提下认为喜欢盲拧与性别有关.
(2)由题意,7名男生中任意抽取2人共:
种结果.
其中2人成功完成时间恰好在同一组内分为两种情形:完成时间都在
或都在
共有
种结果,
故2人成功完成时间恰好在同一组内的概率为
.
科目:高中数学 来源: 题型:
【题目】(10分)若集合A={x|x2+5x﹣6=0},B={x|x2+2(m+1)x+m2﹣3=0}.
(1)若m=0,写出A∪B的子集;
(2)若A∩B=B,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若四面体
的三组对棱分别相等,即
,给出下列结论:
①四面体
每组对棱相互垂直;
②四面体
每个面的面积相等;
③从四面体
每个顶点出发的三条棱两两夹角之和大
而小于
;
④连接四面体
每组对棱中点的线段相互垂直平分.
其中正确结论的序号是__________. (写出所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的x,y
,有
,f(1)=2,且
.
(1)求f(0)的值;
(2)求证:对任意x
,都有f(x)>0;
(3)解不等式f(3
2x)>4.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线
经过
,
两点,与
轴的另一个交点为
,顶点为
,连结
.
![]()
(1)求该抛物线的表达式;
(2)点
为该抛物线上的一动点(与点
、
不重合),设点
的横坐标为
.当点
在直线
的下方运动时,求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在(-2,2)上的奇函数.当x∈(-2,0)时,f(x)=-loga(-x)-loga(2+x),其中a>1.
(1)求函数f(x)的零点.
(2)若t∈(0,2),判断函数f(x)在区间(0,t]上是否有最大值和最小值.若有,请求出最大值和最小值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接
年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了
名学生,将他们的比赛成绩(满分为
分)分为
组:
,
,
,
,
,
,得到如图所示的频率分布直方图.
![]()
(Ⅰ)求
的值;
(Ⅱ)记
表示事件“从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于
分”,估计
的概率;
(Ⅲ)在抽取的
名学生中,规定:比赛成绩不低于
分为“优秀”,比赛成绩低于
分为“非优秀”.请将下面的
列联表补充完整,并判断是否有
的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 |
| ||
女生 |
| ||
合计 |
|
参考公式及数据:
,
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com