精英家教网 > 高中数学 > 题目详情
已知数列{an},其中a1=
4
3
a2=
13
9
,且当n≥3时,an-an-1=
1
3
(an-1-an-2)

(1)求数列{an}的通项公式;
(2)求
lim
n→∞
an
分析:(1)设an-an-1=xn-1,则由已知条件得xn-1=
1
3
xn-2
,由此及彼入手能够推导出an=a1+
1
6
[1-(
1
3
)
n-1
]=
3
2
-
1
2
(
1
3
)n

(2)
lim
n→∞
an=
lim
n→∞
[
3
2
-
1
2
(
1
3
)
n
]=
3
2
-
lim
n→∞
1
2
(
1
3
)n=
3
2
-0=
3
2
解答:解:(1)设an-an-1=xn-1,则由已知条件得xn-1=
1
3
xn-2

所以数列{an}组成了一个公比为
1
3
的等比数列,
其首项x1=a2-a1=
1
9

xn-1=x1(
1
3
)n-2=(
1
3
)n,(n=2,3,4)

an-an-1=(
1
3
)n

∴an-a1=(a2-a1)+(a3-a2)+…+(an-an-1
=(
1
3
)2+(
1
3
)3+(
1
3
)n=
(
1
3
)
2
[1-(
1
3
)
n-1
]
1-
1
3
=
1
6
[1-(
1
3
)
n-1
]

an=a1+
1
6
[1-(
1
3
)
n-1
]=
3
2
-
1
2
(
1
3
)n

(2)
lim
n→∞
an=
lim
n→∞
[
3
2
-
1
2
(
1
3
)
n
]=
3
2
-
lim
n→∞
1
2
(
1
3
)n=
3
2
-0=
3
2
点评:本题考查数列的性质和应用及极限知识,解题时要认真审题,合理选取公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知数列{an},其前n项和Sn=n2+n+1,则a8+a9+a10+a11+a12=
100

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn=
3
2
n2+
7
2
n? (n∈N*)

(Ⅰ)求a1,a2
(Ⅱ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅲ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

19、已知数列{an},其前n项和Sn满足Sn+1=2λSn+1(λ是大于0的常数),且a1=1,a3=4.
(1)求λ的值;
(2)求数列{an}的通项公式an
(3)设数列{nan}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn=
3
2
n2+
7
2
n (n∈N*)

(Ⅰ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅱ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn,点(n,Sn)在以F(0,
14
)为焦点,以坐标原点为顶点的抛物线上,数列{bn}满足bn=2 an
(1)求数列{an},{bn}的通项公式;
(2)设cn=an×bn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案