精英家教网 > 高中数学 > 题目详情
从7名男生5名女生中,选出5人,分别求符合下列条件的选法种数有多少种?
(1)A、B必须当选;
(2)A、B都不当选;
(3)A、B不全当选;
(4)至少有2名女生当选;
(5)选出5名同学,让他们分别担任体育委员、文娱委员等5种不同工作,但体育委员由男生担任,文娱委员由女生担任.
分析:(1)根据题意,先选出A、B,再从其它10个人中再选3人即可,由组合数公式计算可得答案;
(2)根据题意,只需从其它10人中任选5人即可,由组合数公式计算可得答案;
(3)根据题意,按A、B的选取情况进行分类:①,A、B全不选,②,A、B中选1人,先求出每种情况的选法数目,再由分类计数原理计算可得答案;
(4)根据题意,用间接法,先计算从12人中任选5人的选法数目,再分别计算①没有女学生入选,②只有1名女生入选,在总数中将其排除即可得答案;
(5)根据题意,分3步进行,①选出一个男生担任体育班委,②再选出1名女生担任文娱班委,③剩下的10人中任取3人担任其它3个班委,先求出每一步的选法数目,再用分步计数原理可得即可得答案.
解答:解:(1)根据题意,先选出A、B,再从其它10个人中再选3人即可,共有的选法种数为C103=120种,
(2)根据题意,A、B都不当选,只需从其它10人中任选5人即可,共有的选法种数为C105=252种:
(3)根据题意,按A、B的选取情况进行分类:
①,A、B全不选的方法数为C105=252种,
②,A、B中选1人的方法数为C21C104=420,
共有选法252+420=672种,
(4)根据题意,从12人中任选5人,有C105种选法,
没有女学生入选,即全选男生的情况有C75种情况,
只有1名女生入选,即选取1女4男,有C51×C74种选法,
故所有符合条件选法数为:C105-C75-C51×C74=596种,
(5)选出一个男生担任体育班委,有C71种情况,
再选出1名女生担任文娱班委,有C51种情况,
剩下的10人中任取3人担任其它3个班委,有C103种情况,
用分步计数原理可得到所有方法总数为:C71×C51×C103=25200种.
点评:本题考查排列、组合的应用,涉及分类、分步计数原理的运用,解(4)题时注意间接方法的运用,可以避免分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某中学采取分层抽样的方法从应届高三学生中按照性别抽取20名学生,其中8名女生中有3名报考理科,男生中有2名报考文科
(1)是根据以上信息,写出2×2列联表
(2)用假设检验的方法分析有多大的把握认为该中学的高三学生选报文理科与性别有关?
参考公式x2=
n(ad-bc)2
(a+c)(b+d)(a+b)(c+d)
P=(x2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.07 2.71 3.84 5.02 6.64 7.88 10.83

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省东莞市高三模拟(一)文科数学试卷(解析版) 题型:解答题

从某学校高三年级名学生中随机抽取名测量身高,据测量被抽取的学生的身高全部介于之间,将测量结果按如下方式分成八组:第一组.第二组; 第八组,下图是按上述分组方法得到的条形图.

(1)根据已知条件填写下面表格:

组 别

1

2

3

4

5

6

7

8

样本数

 

 

 

 

 

 

 

 

(2)估计这所学校高三年级名学生中身高在以上(含)的人数;

(3)在样本中,若第二组有人为男生,其余为女生,第七组有人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山西长治二中等四校高三第四次联考文科数学试卷(解析版) 题型:解答题

为了调查某大学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:

表1:男生上网时间与频数分布表

上网时间(分钟)

人数

5

25

30

25

15

表2:女生上网时间与频数分布表

上网时间(分钟)

人数

10

20

40

20

10

(Ⅰ)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;

(Ⅱ)完成表3的列联表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?

(Ⅲ)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率.

表3 :

 

上网时间少于60分钟

上网时间不少于60分钟

合计

男生

 

 

 

女生

 

 

 

合计

 

 

 

附:,其中

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了调查某大学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:

表1:男生上网时间与频数分布表

上网时间(分钟)

人数

5

25

30

25

15

表2:女生上网时间与频数分布表

上网时间(分钟)

人数

10

20

40

20

10

(Ⅰ)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;

(Ⅱ)完成表3的列联表,并回答能否有90%的把握认为“学生周日上网时间与性 别有关”?

(Ⅲ)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率.

表3 :

上网时间少于60分钟

上网时间不少于60分钟

合计

男生

女生

合计

附:,其中

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

查看答案和解析>>

同步练习册答案