【题目】如图,已知点
为抛物线
的焦点,过点
的直线交抛物线于
、
两点,点
在抛物线上,使得
的重心
在
轴上,直线
交
轴于点
,且
在点
的右侧.记
、
的面积分别
、
.
![]()
(1)求
的值及抛物线的方程;
(2)求
的最小值及此时点
的坐标.
科目:高中数学 来源: 题型:
【题目】从抛物线
上任意一点P向x轴作垂线段,垂足为Q,点M是线段
上的一点,且满足![]()
(1)求点M的轨迹C的方程;
(2)设直线
与轨迹c交于
两点,T为C上异于
的任意一点,直线
,
分别与直线
交于
两点,以
为直径的圆是否过x轴上的定点?若过定点,求出符合条件的定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
是长轴的一个端点,弦
过椭圆的中心O,点C在第一象限,且
,
.
(1)求椭圆的标准方程;
(2)设P、Q为椭圆上不重合的两点且异于A、B,若
的平分线总是垂直于x轴,问是否存在实数
,使得
?若不存在,请说明理由;若存在,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,把函数
的图象向右平移
个单位,再把图象上各点的横坐标缩小到原来的一半,纵坐标不变,得到函数
的图象,当
时,方程
恰有两个不同的实根,则实数
的取值范围为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个说法,其中正确的是( )
A.命题“若
,则
”的否命题是“若
,则
”
B.“
”是“双曲线
的离心率大于
”的充要条件
C.命题“
,
”的否定是“
,
”
D.命题“在
中,若
,则
是锐角三角形”的逆否命题是假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某班学生喜好体育运动是否与性别有关,对本班60人进行了问卷调查得到了如下的列联表:
喜好体育运动 | 不喜好体育运动 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 60 |
已知按喜好体育运动与否,采用分层抽样法抽取容量为12的样本,则抽到喜好体育运动的人数为7.
(1)请将上面的列联表补充完整;
(2)能否在犯错误的概率不超过0.001的前提下认为喜好体育运动与性别有关?说明你的理由;
下面的临界值表供参考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥
中,
底面
,
,
,
,
.
![]()
(1)当
变化时,点
到平面
的距离是否为定值?若是,请求出该定值;若不是,请说明理由;
(2)当直线
与平面
所成的角为45°时,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件
,用随机模拟的方法估计事件
发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:
232 | 321 | 230 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估计事件
发生的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com