【题目】某投资公司对以下两个项目进行前期市场调研:项目
:通信设备.根据调研,投资到该项目上,所有可能结果为:获利
、损失
、不赔不赚,且这三种情况发生的概率分别为
;项目
:新能源汽车.根据调研,投资到该项目上,所有可能结果为:获利
、亏损
,且这两种情况发生的概率分别为
.经测算,当投入
两个项目的资金相等时,它们所获得的平均收益(即数学期望)也相等.
(1)求
的值;
(2)若将
万元全部投到其中的一个项目,请你从投资回报稳定性考虑,为投资公司选择一个合理的项目,并说明理由.
科目:高中数学 来源: 题型:
【题目】某工厂有120名工人,其年龄都在20~ 60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60]分成四组,其频率分布直方图如下图所示.工厂为了开发新产品,引进了新的生产设备,要求每个工人都要参加A、B两项培训,培训结束后进行结业考试。已知各年龄段两项培训结业考试成绩优秀的人数如下表所示。假设两项培训是相互独立的,结业考试也互不影响。
![]()
年龄分组 | A项培训成绩 优秀人数 | B项培训成绩 优秀人数 |
[20,30) | 27 | 16 |
[30,40) | 28 | 18 |
[40,50) | 16 | 9 |
[50,60] | 6 | 4 |
(1)若用分层抽样法从全厂工人中抽取一个容量为40的样本,求四个年龄段应分别抽取的人数;
(2)根据频率分布直方图,估计全厂工人的平均年龄;
(3)随机从年龄段[20,30)和[40,50)中各抽取1人,设这两人中A、B两项培训结业考试成绩都优秀的人数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆
的方程为
,圆
的方程为
,若动圆
与圆
内切,与圆
外切.
(Ⅰ)求动圆圆心
的轨迹
的方程;
(Ⅱ)过直线
上的点
作圆
的两条切线,设切点分别是
,
,若直线
与轨迹
交于
,
两点,求
的最小值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,离心率
,且椭圆的短轴长为2.
(1)球椭圆的标准方程;
(2)已知直线
过右焦点
,且它们的斜率乘积为
,设
分别与椭圆交于点
和
.
①求
的值;
②设
的中点
,
的中点为,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题,其中正确的序号是________(写出所有正确命题的序号).
①已知集合
,
,则映射
中满足
的映射共有
个;
②函数
的图象关于
对称的函数解析式为
;
③若函数
的值域为
,则实数
的取值范围是
;
④已知函数
的最大值为
,最小值为
,则
的值等于
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-2ax-1+a,a∈R.
(1)若a=2,试求函数y=
(x>0)的最小值;
(2)对于任意的x∈[0,2],不等式f(x)≤a成立,试求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某购物中心为了了解顾客使用新推出的某购物卡的顾客的年龄分布情况,随机调查了
位到购物中心购物的顾客年龄,并整理后画出频率分布直方图如图所示,年龄落在区间
内的频率之比为
.
(1) 求顾客年龄值落在区间
内的频率;
(2) 拟利用分层抽样从年龄在
的顾客中选取
人召开一个座谈会,现从这
人中选出
人,求这两人在不同年龄组的概率.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com