精英家教网 > 高中数学 > 题目详情
已知函数,其中=(
(1)求函数f(x)在[0,π]上的单调递增区间和最小值;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(A)=-1,求的值.
【答案】分析:计算向量的数量积,利用二倍角.两角和的正弦函数化简函数f(x)的表达式,得到一个角的一个三角函数的形式;
(1)借助正弦函数的单调增区间,求函数y=f(x)的单调递增区间.借助正弦函数的最值,求出函数y=f(x)的最小值,以及取得最小值时x的值;
(2)通过f(A)的表达式,可求得A的值,再利用正弦定理化简求出表达式的值.
解答:解:(1)函数=
=,所以

所以函数的单调增区间为
∴f(x)min=1-2=-1
(2)∵f(A)=-1,

由正弦定理可知:

所以为2.
点评:本题主要考查二倍角公式、余弦定理和两角和与差的公式的应用.高考对三角函数的考查以基础题为主,但是这部分公式比较多不容易记忆,也为这一部分增加了难度;考查三角函数的单调性,三角函数的最值,考查计算能力,基本知识的灵活运应能力,考查转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年临沂市质检一文)(14分)已知函数(其中a>0),且在点(0,0)处的切线与直线平行。

   (1)求c的值;

   (2)设的两个极值点,且的取值范围;

   (3)在(2)的条件下,求b的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

⒗ 已知函数,其中为实数,且处取得的极值为

⑴求的表达式;

⑵若处的切线方程。

  

查看答案和解析>>

科目:高中数学 来源:2013-2014学年北京市西城区高三上学期期末考试文科数学试卷(解析版) 题型:解答题

已知函数,其中是自然对数的底数,.

函数的单调区间

时,求函数的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海黄浦区高三上学期期末考试(即一模)文数学卷(解析版) 题型:解答题

已知函数(其中是实数常数,

(1)若,函数的图像关于点(—1,3)成中心对称,求的值;

(2)若函数满足条件(1),且对任意,总有,求的取值范围;

(3)若b=0,函数是奇函数,,且对任意时,不等式恒成立,求负实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014届陕西省高二上学期期末考试理科数学试卷(解析版) 题型:选择题

已知函数(其中)的图象如图(上)所示,则函数的图象是(  )                                                    

 

查看答案和解析>>

同步练习册答案