精英家教网 > 高中数学 > 题目详情

如图,已知四棱锥P-ABCD,底面ABCD为蓌形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点。 

(Ⅰ)求证:AE⊥PD;

(Ⅱ)若直线PB与平面PAD所成角的正弦值为,求二面角E-AF-C的余弦值.

【解析】(Ⅰ)要证AE⊥PD ,先证AE⊥平面PAD,需要证明PA⊥AE,转化为证PA⊥平面ABCD;(Ⅱ)建立坐标系计算二面角E-AF-C的余弦值.

 

【答案】

(Ⅰ)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.

因为E为BC的中点,所以AE⊥BC.又BC∥AD,因此AE⊥AD.

因为PA⊥平面ABCD,AE平面ABCD,所以PA⊥AE.

而PA平面PAD,AD平面PAD 且PA∩AD=A,

所以  AE⊥平面PAD,又PD平面PAD.所以 AE⊥PD.……6分

(Ⅱ)解:由(Ⅰ)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,

设AB=2,AP=a,则A(0,0,0),B(,-1,0),C(,1,0),D(0,2,0),P(0,0,a),E(,0,0),F(),

所以?=(,-1,-a),且?=(,0,0)为平面PAD的法向量,设直线PB与平面PAD所成的角为θ,

由sinθ=|cos<?,?>|===……8分

解得a=2 所以?=(,0,0),?=(,1)

设平面AEF的一法向量为m=(x1,y1,z1),则,因此取z1=-1,则m=(0,2,-1),……10分 因为BD⊥AC,BD⊥PA,PA∩AC=A,所以BD⊥平面AFC,故为平面AFC的一法向量.又=(-,3,0),

所以cos<m,>=.

因为二面角E-AF-C为锐角,所以所求二面角的余弦值为.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案