【题目】设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)
【答案】A
【解析】解:设g(x)=
,则g(x)的导数为:g′(x)=
,
∵当x>0时总有xf′(x)<f(x)成立,
即当x>0时,g′(x)恒小于0,
∴当x>0时,函数g(x)=
为减函数,
又∵g(﹣x)=
=
=
=g(x),
∴函数g(x)为定义域上的偶函数
又∵g(﹣1)=
=0,
∴函数g(x)的图象性质类似如图:
数形结合可得,不等式f(x)>0xg(x)>0
或
,
0<x<1或x<﹣1.
故选:A.![]()
由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=
为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于xg(x)>0,数形结合解不等式组即可.
科目:高中数学 来源: 题型:
【题目】某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.
(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足
,记数列{an}的前n项和为Sn , cn=Sn﹣2n+2ln(n+1)
(1)令
,证明:对任意正整数n,|sin(bnθ)|≤bn|sinθ|
(2)证明数列{cn}是递减数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=sinxcosx﹣cos2(x+
).
(1)求f(x)的单调区间;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f(
)=0,a=1,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知条件p:A={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R},条件q:B={x|x2﹣2x﹣3≤0,x∈R}.
(1)若A∩B={x|0≤x≤3},求实数m的值;
(2)若q是¬p的充分条件,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:(a-1)x+y+b=0,l2:ax+by-4=0,求满足下列条件的a,b的值.
(1)l1⊥l2,且l1过点(1,1);
(2)l1∥l2,且l2在第一象限内与两坐标轴围成的三角形的面积为2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列
的前
项和为
,等比数列
的前
项和为
,且
,
,
.
(1)若
,求
的通项公式;
(2)若
,求
.
【答案】(1)
;(2)21或
.
【解析】试题分析:(1)设等差数列
公差为
,等比数列
公比为
,由已知条件求出
,再写出通项公式;(2)由
,求出
的值,再求出
的值,求出
。
试题解析:设等差数列
公差为
,等比数列
公比为
有
,即
.
(1)∵
,结合
得
,
∴
.
(2)∵
,解得
或3,
当
时,
,此时
;
当
时,
,此时
.
【题型】解答题
【结束】
20
【题目】如图,已知直线与抛物线
相交于
两点,且
,
交
于
,且点
的坐标为
.
![]()
(1)求
的值;
(2)若
为抛物线的焦点,
为抛物线上任一点,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com