【题目】已知圆C:
.
(1)求经过点
且与圆C相切的直线方程;
(2)设直线
与圆C相交于A,B两点,若
,求实数n的值;
(3)若点
在以
为圆心,以1为半径的圆上,距离为4的两点P,Q在圆C上,求
的最小值.
科目:高中数学 来源: 题型:
【题目】已知向量
,
,设函数
,且
的图象过点
和点
.
(Ⅰ)求
的值;
(Ⅱ)将
的图象向左平移
(
)个单位后得到函数
的图象.若
的图象上各最高点到点
的距离的最小值为1,求
的单调增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图
,在矩形
中,
,
为
的中点,
为
的中点.将
沿
折起到
,使得平面
平面
(如图
).
![]()
图1 图2
(Ⅰ)求证:
;
(Ⅱ)求直线
与平面
所成角的正弦值;
(Ⅲ)在线段
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂因排污比较严重,决定着手整治,一个月时污染度为
,整治后前四个月的污染度如下表:
月数 |
|
|
|
| … |
污染度 |
|
|
|
| … |
污染度为
后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式:
,
,
,其中
表示月数,
、
、
分别表示污染度.
(1)问选用哪个函数模拟比较合理,并说明理由;
(2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知圆C:x2+y2-4x=0及点A(-1,0),B(1,2)
(1)若直线l平行于AB,与圆C相交于M,N两点,MN=AB,求直线l的方程;
(2)若圆C上存在两个点P,使得PA2+PB2=a(a>4),求a的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列命题的真假:
(1)
是
的必要条件;
(2)
是
的充要条件;
(3)两个三角形的两组对应角相等是这两个三角形相似的充要条件;
(4)三角形的三条边满足勾股定理是这个三角形为直角三角形的充要条件;
(5)在
中,重心和垂心重合是
为等边三角形的必要条件;
(6)如果点
到点
的距离相等,则点
一定在线段
的垂直平分线上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com