已知点
是椭圆
上任一点,点
到直线
的距离为
,到点
的距离为
,且
.直线
与椭圆
交于不同两点
、
(
,
都在
轴上方),且
.
(1)求椭圆
的方程;
(2)当
为椭圆与
轴正半轴的交点时,求直线
方程;
(3)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.![]()
(1)
,(2)
,(3)
.
解析试题分析:(1)本题椭圆方程的求法是轨迹法.这是由于题目没有明确直线
是左准线,点
是左焦点.不可利用待定系数法求解. 设
,则
,
,化简得:
椭圆C的方程为:
,(2)条件中角的关系一般化为斜率,利用坐标进行求解. 因为
,所以
,由题意得![]()
,
,可求与椭圆交点
,从而可得直线
方程
(3)直线过定点问题,一般先表示出直线,
,利用等量关系将两元消为一元. ![]()
,代入
得:
,
.化简得
,直线
方程:![]()
直线
总经过定点![]()
解:(1)设
,则
, (2分)![]()
化简得:
椭圆C的方程为:
(4分)
(2)![]()
,![]()
,
(3分)
代入
得:
,
,代入
得
,
(5分)
, (6分)
(3)解法一:由于
,
。 (1分)
设![]()
设直线
方程:
,代入
得:
(3分)![]()
![]()
![]()
, (5分)
直线
方程:![]()
直线
总经过定点
(6分)
解法二:由于
,所以
关于x轴的对称点
在直线
上。![]()
设![]()
设直线
方程:
,代入![]()
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(
)的左焦点为
,离心率为
.
(1)求椭圆C的标准方程;
(2)设O为坐标原点,T为直线
上任意一点,过F作TF的垂线交椭圆C于点P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
经过点
,其离心率
.
(1)求椭圆
的方程;
(2)过坐标原点
作不与坐标轴重合的直线
交椭圆
于
两点,过
作
轴的垂线,垂足为
,连接
并延长交椭圆
于点
,试判断随着
的转动,直线
与
的斜率的乘积是否为定值?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)(2011•重庆)如图,椭圆的中心为原点0,离心率e=
,一条准线的方程是x=2![]()
![]()
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点P满足:
=
+2
,其中M、N是椭圆上的点,直线OM与ON的斜率之积为﹣
,
问:是否存在定点F,使得|PF|与点P到直线l:x=2
的距离之比为定值;若存在,求F的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)如图,分别过椭圆
:
左右焦点
、
的动直线
相交于
点,与椭圆
分别交于
不同四点,直线
的斜率
、
、
、
满足
.已知当
轴重合时,
,
.
(1)求椭圆
的方程;
(2)是否存在定点
,使得
为定值.若存在,求出
点坐标并求出此定值,若不存在,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
是抛物线为
上的一点,以S为圆心,r为半径(
)做圆,分别交x轴于A,B两点,连结并延长SA、SB,分别交抛物线于C、D两点。
(1)求证:直线CD的斜率为定值;
(2)延长DC交x轴负半轴于点E,若EC : ED =" 1" : 3,求
的值。![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左右焦点分别为
,点
为短轴的一个端点,
.
(1)求椭圆
的方程;
(2)如图,过右焦点
,且斜率为
的直线
与椭圆
相交于
两点,
为椭圆的右顶点,直线
分别交直线
于点
,线段
的中点为
,记直线
的斜率为
.
求证:
为定值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线
="1"
的两个焦点为
、
,P是双曲线上的一点,
且满足
,
(1)求
的值;
(2)抛物线
的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,短轴端点分别为
.
(1)求椭圆
的标准方程;
(2)若
,
是椭圆
上关于
轴对称的两个不同点,直线
与
轴交于点
,判断以线段
为直径的圆是否过点
,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com