【题目】(本题满分14分)如图,已知椭圆
:
,其左右焦点为
及
,过点
的直线交椭圆
于
两点,线段
的中点为
,
的中垂线与
轴和
轴分别交于
两点,且
、
、
构成等差数列.
![]()
(1)求椭圆
的方程;
(2)记△
的面积为
,△
(
为原点)的面积为
.试问:是否存在直线
,使得
?说明理由.
【答案】(1)
;(2)不存在直线
,使得
.
【解析】
试题分析:(1)求椭圆
的标准方程,由已知
、
、
构成等差数列,即
,由椭圆的定义可得,
,由已知焦点为
及
,可得
,可求出
,从而得椭圆
的标准方程;(2)记△
的面积为
,△
(
为原点)的面积为
.试问:是否存在直线
,使得
?说明理由,这是探索性命题,一般假设其存在,本题假设存在直线
,使得
,由题意直线
不能与
轴垂直,故设
方程为
,将其代入
,整理得
,设
,
,由根与系数关系,表示出点
的坐标,写出中垂线方程,得点
的坐标,由于
和
相似,若
,则
,建立方程,求解斜率
的值,若有解,则存在,若无解,则不存在.
试题解析:(1)因为
、
、
构成等差数列,
所以
,所以
. (2分)
又因为
,所以
, (3分)
所以椭圆
的方程为
. (4分)
(2)假设存在直线
,使得
,显然直线
不能与
轴垂直.
设
方程为
(5分)
将其代入
,整理得
(6分)
设
,
,所以
.
故点
的横坐标为
.所以
. (8分)
因为
,所以
, 解得
,
即
(10分)
和
相似,
若
,则
(11分)
所以
, (12分)
整理得
. (13分)
因为此方程无解,所以不存在直线
,使得
. (14分)
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①一个命题的否命题为真,则它的逆命题一定为真;
②若p
q为假命题,则p,q均为假命题;
③命题“若x2 -3x+2=0,则x=2”的否命题为“若x2 -3x+2=0,则x≠2”;
④“若a2+b2=0,则a, b全为0”的逆否命题是“若a, b全不为0,则a2+b2≠0”其中正确的命题序号是( )
A.①B.①③C.②④D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)
如图,四边形ABCD为梯形,AB//CD,
平面ABCD,![]()
为BC的中点.
(1)求证:平面
平面PDE.
(2)在线段PC上是否存在一点F,使得PA//平面BDF?若存在,指出点F的位置,并证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
sinxcosx+cos2x-
.
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)将函数f(x)图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数g(x)的图象.若关于x的方程g(x)-k=0,在区间[0,
]上有实数解,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究性学习小组为了调查研究学生玩手机对学习的影响,现抽取了30名学生,得到数据如表:
玩手机 | 不玩手机 | 合计 | |
学习成绩优秀 | 8 | ||
学习成绩不优秀 | 16 | ||
合计 | 30 |
已知在全部的30人中随机抽取1人,抽到不玩手机的概率为
.
(1)请将2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.005的前提下认为玩手机对学习有影响;
(3)现从不玩手机,学习成绩优秀的8名学生中任意选取两人,对他们的学习情况进行全程跟踪,记甲、乙两名学生被抽到的人数为X,求X的分布列和数学期望.
附:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】校园准备绿化一块直径为
的半圆形空地,点
在半圆圆弧上,△
外的地方种草,△
的内接正方形
为一水池(
,
在
边上),其余地方种花,若
,
,设△
的面积为
,正方形面积为
;
![]()
(1)用
和
表示
和
;
(2)当
固定,
变化时,求
最小值及此时的角
;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(
个月)和市场占有率(
)的几组相关对应数据:
| 1 | 2 | 3 | 4 | 5 |
| 0.02 | 0.05 | 0.1 | 0.15 | 0.18 |
(1)根据上表中的数据,用最小二乘法求出
关于
的线性回归方程;
(2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过
(精确到月).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com