精英家教网 > 高中数学 > 题目详情

如图,△ABC内接于圆O,AB是圆O的直径,,设AE与平面ABC所成的角为,且,四边形DCBE为平行四边形,DC平面ABC.

(1)求三棱锥C-ABE的体积;

(2)在CD上是否存在一点M,使得MO//平面

证明你的结论.

(1)1/2  (2) 在CD上是否存在一点M,使得MO//平面


解析:

(1)∵四边形DCBE为平行四边形  ∴

∵ DC平面ABC         ∴平面ABC

为AE与平面ABC所成的角,即--------------------2分

在Rt△ABE中,由,------------3分

∵AB是圆O的直径  ∴ ∴

        ∴----------------------------------------4分

------------------5分

(2)在CD上存在点,使得MO平面,该点的中点. ---10分  

证明如下:

    如图,取的中点,连MO、MN、NO,

∵M、N、O分别为CD、BE、AB的中点,

∴.----------------------------------------------11分

平面ADE,平面ADE,

 ------------------------------------------------------12分

同理可得NO//平面ADE.

,∴平面MNO//平面ADE.--------------------13分

平面MNO,∴MO//平面ADE.  -------------14分(其它证法请参照给分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,△ABC内接于圆O,AB是圆O的直径,AB=2,BC=1,设AE与平面ABC所成的角为θ,且tanθ=
3
2
,四边形DCBE为平行四边形,DC⊥平面ABC.
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,BE∥MN交AC于点E.若AB=6,BC=4,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC内接于圆柱的底面圆O,AB是圆O的直径,AB=2,BC=1,DC、EB是两条母线,且 tan∠EAB=
3
2

(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•沈阳二模)选修4-1:几何证明选讲
如图,△ABC内接于⊙O,AB是⊙O的直径,PA是过点A的直线,且∠PAC=∠ABC.
(1)求证:PA是⊙O的切线;
(2)如果弦CD交AB于点E,AC=8,CE:ED=6:5,AE:EB=2:3,求直径AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,BE∥MN交AC于点E,若AB=6,BC=4,则AE的长为(  )

查看答案和解析>>

同步练习册答案