精英家教网 > 高中数学 > 题目详情

中,分别为的对边,如果

的面积为,那么为                                         (   )

(A)          (B)                                   (C)                           (D)  

 

【答案】

B

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中有如下结论:“若点M为△ABC的重心,则
MA
+
MB
+
MC
=
0
设a,b,c分别为△ABC的内角A,B,C的对边,点M为△ABC的重心.如a
MA
+b
MB
+
3
3
c
MC
=
0
,则内角A的大小为
 
;若a=3,则△ABC的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,M是单位圆与x轴正半轴的交点,点P在单位圆上,∠MOP=x(0<x<π),
OQ
=
OM
+
OP
,四边形OMQP的面积为S,函数f(x)=
OM
OQ
+
3
S

(1)求函数f(x)的表达式及单调递增区间;
(2)在△ABC中,a、b、c分别为角A、B、C的对边,若f(A)=3,b=1,S△ABC=
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)下列命题中,正确的是
(1)(2)(3)
(1)(2)(3)

(1)平面向量
a
b
的夹角为60°,
a
=(2,0)
|
b
|=1
,则|
a
+
b
|
=
7

(2)在△ABC中,A,B,C的对边分别为a,b,c,若acosC,bcosB,ccosA成等差数列则B=
π
3

(3)O是△ABC所在平面上一定点,动点P满足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
)
,λ∈(0,+∞),则直线AP一定通过△ABC的内心
(4)设函数f(x)=
x-[x],x≥0
f(x+1),x<0
其中[x]表示不超过x的最大整数,如[-1.3]=-2,[1.3]=1,则函数y=f(x)-
1
4
x-
1
4
不同零点的个数2个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)给出下列命题:
①设向量
e1
e2
满足|
e1
|=2,|
e2
|=1,
e1
e2
的夹角为
π
3
.若向量2t
e1
+7
e2
e1
+t
e2
的夹角为钝角,则实数t的取值范围是(-7,-
1
2
);
②已知一组正数x1,x2,x3,x4的方差为s2=
1
4
(x12+x22+x32+x42)-4,则x1+1,x2+1,x3+1,x4+1的平均数为1
③设a,b,c分别为△ABC的角A,B,C的对边,则方程x2+2ax+b2=o与x2+2cx-b2=0有公共根的充要条件是A=90°;
④若f(n)表示n2+1(n∈N)的各位上的数字之和,如112+1=122,1+2+2=5,所以f(n)=5,记f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,则f20(5)=11.
上面命题中,假命题的序号是
 (写出所有假命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•韶关二模)在△ABC中,三个内角A,B,C的对边分别为a,b,c,其中c=2,且
cosA
cosB
=
b
a
=
3
1

(1)求证:△ABC是直角三角形;
(2)如图,设圆O过A,B,C三点,点P位于劣弧
AC
上,求△PAC面积最大值.

查看答案和解析>>

同步练习册答案