精英家教网 > 高中数学 > 题目详情
(2012•商丘三模)选修4-4:坐标系与参数方程
在极坐标系中,圆C的方程为ρ=2
2
sin(θ+
π
4
),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=t
y=1+2t
(t为参数).
(Ⅰ)求直线l和圆C的直角坐标方程;
(Ⅱ)判断直线l和圆C的位置关系.
分析:(Ⅰ)消去参数,把参数方程化为普通方程的方法,把极坐标方程两边同时乘以ρ,再根据极坐标与直角坐标的互化公式,化为直角坐标方程.
(Ⅱ)求出圆心C到直线l的距离,由此距离小于半径,可得直线l和圆C相交.
解答:解:(Ⅰ)消去参数t,得直线l的直角坐标方程为y=2x+1.…(2分)
ρ=2
2
sin(θ+
π
4
)
 即ρ=2(sinθ+cosθ),两边同乘以ρ得ρ2=2(ρsinθ+ρcosθ),
得⊙C的直角坐标方程为:(x-1)2+(y-1)2=2.…(6分)
(Ⅱ)圆心C到直线l的距离d=
|2-1+1|
22+12
=
2
5
5
,…(8分)
因为 d<
2
,…(9分)
所以直线l和圆C相交. …(10分)
点评:本题主要考查把参数方程化为普通方程的方法,把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•商丘三模)已知等比数列{an}的前n项和Sn=2n+m(m∈R).
(Ⅰ)求m的值及{an}的通项公式;
(Ⅱ)设bn=2log2an-13,数列{bn}的前n项和为Tn,求使Tn最小时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)已知不等式2|x-3|+|x-4|<2a.
(Ⅰ)若a=1,求不等式的解集;
(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)已知椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
3
,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4
2

(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l:x=ky+m与椭圆M交手A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.
(Ⅰ)求证:平面EFC⊥平面BCD;
(Ⅱ)若平面ABD⊥平面BCD,且AD=BD=BC=1,求三棱锥B-ADC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)已知实数x,y满足
x-y≤1
x≥
1
2
2x+y≤4
,则x-3y的最大值为
2
2

查看答案和解析>>

同步练习册答案