精英家教网 > 高中数学 > 题目详情
(2011•江西模拟)如图,已知△AOB,∠AOB=
π
2
,∠BAO=θ,AB=4,D为线段AB的中点.若△AOC是△AOB绕直线AO旋转而成的.记二面角B-AO-C的大小为
π
2

(Ⅰ) 当平面COD⊥平面AOB时,求θ的值;
(Ⅱ) 当
π
2
∈[
3
,θ]时,求二面角C-OD-B的余弦值的取值范围.
分析:(I)建立间直角坐标系O-xyz,由
n1
OD
=0
n1
OC
=0
求出平面COD的一个法向量,又平面AOB的一个法向量为
n2
=(1,0,0),由平面COD⊥平面AOB得
n1
n2
=0,求出θ的值.
(II)由(Ⅰ)得当θ=
π
2
时,cosα=0;当θ∈(
π
2
3
]时,tanθ≤-
3
,利用向量的数量积公式将cosα用θ的三角函数表示,据tanθ≤-
3
,求出cosα的范围.
解答:解:(Ⅰ) 如图,以O为原点,在平面OBC内垂直于OB的直线为x轴,OB,OA所在的直线分别为y轴,z轴建立空间直角坐标系O-xyz,
则A (0,0,2
3
),B (0,2,0),
D (0,1,
3
),C (2sinθ,2cosθ,0).
n1
=(x,y,z)为,
n1
OD
=0
n1
OC
=0
xsinθ+ycosθ=0
y+
3
z=0

取z=sinθ,
n1
=(
3
cosθ,-
3
sinθ,sinθ).
因为平面AOB的一个法向量为
n2
=(1,0,0),
由平面COD⊥平面AOB得
n1
n2
=0,
所以cosθ=0,即θ=
π
2
.         …(6分)
(Ⅱ) 设二面角C-OD-B的大小为α,
由(Ⅰ)得当θ=
π
2
时,cosα=0;
当θ∈(
π
2
3
]时,
tanθ≤-
3

cosα=
n1
n2
|
n1
||
n2
|
=
3
cosθ
3+sin2θ
=-
3
4tan2θ+3

故-
5
5
≤cosα<0.
综上,二面角C-OD-B的余弦值的取值范围为[-
5
5
,0].  …(13分)
点评:解决二面角的大小问题,一般借助的工具是通过建立空间直角坐标系,将二面角的问题转化为两个平面的法向量所成的角的问题,通过向量的数量积来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•江西模拟)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=
3
bc
sinC=2
3
sinB
,则A=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知数列{an},{bn}分别是等差、等比数列,且a1=b1=1,a2=b2,a4=b3≠b4
①求数列{an},{bn}的通项公式;
②设Sn为数列{an}的前n项和,求{
1
Sn
}的前n项和Tn
③设Cn=
anbn
Sn+1
(n∈N),Rn=C1+C2+…+Cn,求Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知数列{an}满足an+1=
2an
an+2
(n∈N*),a2011=
1
2011

(1)求{an}的通项公式;
(2)若bn=
4
an
-4023
cn=
b
2
n+1
+
b
2
n
2bn+1bn
(n∈N*)
,求证:c1+c2+…+cn<n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函数g(x)在区间(0,e]上的值域;
(2)是否存在实数a,对任意给定的x0∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,y2),如果对于函数y=F(x)图象上的点M(x0,y0)(其中x0=
x1+x22
)
总能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)设a∈R,f(x)=cosx(asinx-cosx)+cos2(
π
2
-x)
满足f(-
π
3
)=f(0)

(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)设△ABC三内角A,B,C所对边分别为a,b,c且
a2+c2-b2
a2+b2-c2
=
c
2a-c
,求f(x)在(0,B]上的值域.

查看答案和解析>>

同步练习册答案