【题目】口袋中装有质地大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸一个球,记下编号,放回后乙再摸一个球,记下编号.如果两个编号的和为偶数就算甲胜,否则算乙胜.
(1)求甲胜且编号的和为6的事件发生的概率;
(2)这种游戏规则公平吗?说明理由.
【答案】(1)
;(2)游戏规则不公平,理由见解析.
【解析】
试题分析:(1)相当于两人掷含有
个面的色子,共
种情况,然后输入和为偶数,且和为
的情况种数,然后用古典概型求概率;(2)偶数,就是甲胜,其他情况乙胜,分别算出甲胜的概率和乙胜的概率,比较是否相等,相等就公平,不相等就不公平.
试题解析:解:(1)设“甲胜且编号的和为6”为事件
.
甲编号为
,乙编号为
,
表示一个基本事件,
则两人摸球结果包括(1,2),(1,3),…,(1,5),(2,1),(2,2),…,(5,4),(5,5)共25个基本事件;
包括的基本事件有(1,5),(2,4),(3,3),(4,2),(5,1)共5个.
∴
.
答:甲胜且编号的和为6的事件发生的概率为
.
(2)这种游戏不公平.
设“甲胜”为事件
,“乙胜”为事件
.甲胜即两个编号的和为偶数所包含基本事件数为以下13个:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).
所以甲胜的概率为
,乙胜的概率为
,
∵
,∴这种游戏规则不公平.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,过点
作垂直于
轴的直线
,直线
垂直
于点
,线段
的垂直平分线交
于点
.
(1)求点
的轨迹
的方程;
(2)过点
作两条互相垂直的直线
,且分别交椭圆于
,求四边形
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高三数学奥林匹克竞赛集训队的一次数学测试成绩的茎叶图(图1)和频率分布直方图(图2)都受到不同程度的破坏,可见部分如图所示,据此解答如下问题.
![]()
(1)求该集训队总人数及分数在[80,90)之间的频数;
(2)计算频率分布直方图中[80,90)的矩形的高;
(3)若要从分数在[80,100]之间的试卷中任取两份分析学生的答题情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从高二年级学生中随机抽取50名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100],得到如图所示的频率分布直方图.
![]()
(1)若该校高二年级共有学生1000人,试估计成绩不低于60分的人数;
(2)求该校高二年级全体学生期中考试成绩的众数、中位数和平均数的估计值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方体
的棱长为1,
分别是棱
,
的中点,过直线
的平面分别与棱
、
交于
,设
,
,给出以下四个命题:
①四边形
为平行四边形;
②若四边形
面积
,
,则
有最小值;
③若四棱锥
的体积![]()
,
,则
为常函数;
④若多面体
的体积
,
,则
为单调函数.
其中假命题为( )
A.① ③ B.② C.③④ D.④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数
的对称轴为
,
.
(1)求函数
的最小值及取得最小值时
的值;
(2)试确定
的取值范围,使
至少有一个实根;
(3)当
时,
,对任意
有
恒成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com