精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\frac{1}{{{x^2}-1}}$.
(1)求f(x)的定义域;
(2)判断函数f(x)在(1,+∞)上的单调性,并用单调性的定义加以证明.

分析 (1)令分母不等于0解出x的范围;
(2)在(1,+∞)上任取两个数x1<x2,化简f(x1)-f(x2),判断其符号,得出结论.

解答 解:(1)函数的定义域为{x|x≠±1}.
(2)在(1,+∞)上任取两个数x1<x2
∴f(x1)-f(x2)=$\frac{1}{{{x}_{1}}^{2}-1}-\frac{1}{{{x}_{2}}^{2}-1}$=$\frac{{{x}_{2}}^{2}-{{x}_{1}}^{2}}{({{x}_{1}}^{2}-1)({{x}_{2}}^{2}-1)}$=$\frac{({x}_{2}+{x}_{1})({x}_{2}-{x}_{1})}{({{x}_{1}}^{2}-1)({{x}_{2}}^{2}-1)}$,
∵1<x1<x2∴x2-x1>0,$({x_1}^2-1)({x_2}^2-1)>0$,
∴$\frac{({x}_{2}+{x}_{1})({x}_{2}-{x}_{1})}{({{x}_{1}}^{2}-1)({{x}_{2}}^{2}-1)}$>0,
即f(x1)-f(x2)>0
∴f(x1)>f(x2
∴函数$f(x)=\frac{1}{{{x^2}-1}}$在(1,+∞)上是减函数.

点评 本题考查了利用定义判断函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.现要将中国南方的新鲜荔枝运到北方甲、乙两地销售,运输时间单位以天计算.从运输出发到目的地所用时间为n天,则新鲜荔枝的品质为n级.据统计,每吨n级新鲜荔枝的利润是:运到甲地200-60n;运到乙地为300-70n.根据历史资料,近期各有10批次运往甲、乙两地的运输时间及频数统计如表:
目的地/频数/运输时间12345
甲地2431
乙地1342
以下计算都将频率视为概率,若选择运往甲地或乙地的概率相同(利润单位为:元)
(1)问运往甲地或乙地的新鲜荔枝每吨利润不低于80元的概率;
(2)设运到乙地的新鲜荔枝每吨利润为随机变量ξ,求ξ的分布列和数学期望Eξ;
(3)在同一批次中,把吨位数相同的新鲜荔枝运到甲地和运到乙地所获利润分别为X、Y,求事件“X>Y”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点P1的球坐标是(2$\sqrt{2}$,$\frac{2π}{3}$,$\frac{π}{4}$),点P2的柱坐标是(2$\sqrt{3}$,$\frac{π}{6}$,-$\sqrt{2}$),则|P1P2|=3-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某种产品的广告支出x与销售额y(单位:万元)之间有如下对应数据:
x24568
y3040605070
根据上表可得回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中的$\widehat{b}$为6.5.若要使销售额不低于100万元,则至少需要投入广告费为(x为整数)(  )
A.10万元B.11万元C.12万元D.13万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.2log6$\sqrt{2}$+3log6$\root{3}{3}$=(  )
A.1B.0C.6D.log6$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=log2(x2-2ax+1+a)在(-∞,1]上递减,则实数a的取值范围是(  )
A.[1,2)B.(1,2)C.[1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给出下列四个结论:
①若n组数据(x1,y1)…(xn,yn)的散点都在y=-2x+1上,则相关系数r=-1;
②由直线x=$\frac{1}{2}$,x=2,曲线y=$\frac{1}{x}$及x轴围成的图形的面积是2ln2;
③已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤-2)=0.21;
④设回归直线方程为$\widehat{y}$=2-2.5x,当变量x增加一个单位时,$\widehat{y}$平均增加2个单位.
其中错误结论的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若集合A={1,2},N={1,2,3},则满足A∪X=N的集合X的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.学习雷锋精神的前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好,单位对学习雷锋精神前后各半年内餐椅的损坏情况做了一个大致统计,具体数据如表:
损坏餐椅数未损坏餐椅数总 计
学习雷锋精神前50150200
学习雷锋精神后30170200
总  计80320400
(1)求学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学校雷锋精神是否有关?
(2)请说明是否有97.5%的把握认为损毁餐椅数量与学习雷锋精神有关?
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.0763.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案