【题目】如图,在三棱柱
中,侧面
是菱形,且
,平面
平面
,
,
,O为
的中点.
![]()
(1)求证:
;
(2)求二面角
的余弦值.
【答案】(1)证明见解析(2)![]()
【解析】
(1)根据题意先证明
平面
得
,证明
平面
,即可求证;(2)分别以
,
,
为x轴,y轴,z轴的正方向建立空间直角坐标系,求出平面的法向量,利用面面角公式求解.
(1)如图,连接
,
,
![]()
在矩形
中,
,O为
的中点,
所以
,
因为
,
所以
为正三角形,
又O为
的中点,所以
,
又平面
平面
,平面
平面
,
平面
,
所以
平面
,
又
平面
,
所以
,
又
,
所以
平面![]()
又
平面
,
所以![]()
(2)取
的中点
,连接
,则![]()
所以OA, OB ,OE两两垂直,
如图,以
为坐标原点,分别以
,
,
为x轴,y轴,z轴的正方向,
建立空间直角坐标系,
![]()
则![]()
![]()
设平面OBC的法向量为![]()
则
,即![]()
令
,
得
是平面OBC的一个法向量,
设平面
的法向量为![]()
则
,即![]()
令
, 得平面
的一个法向量为![]()
则![]()
由图知二面角
为锐二面角,
所以二面角
的余弦值为
.
科目:高中数学 来源: 题型:
【题目】为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高三年级抽取了30名男生和20名女生的该学科成绩,得到如下所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分).
![]()
![]()
(Ⅰ)(i)请根据图示,将2×2列联表补充完整;
优分 | 非优分 | 总计 | |
男生 | |||
女生 | |||
总计 | 50 |
(ii)据此列联表判断,能否在犯错误概率不超过10%的前提下认为“该学科成绩与性别有关”?
(Ⅱ)将频率视作概率,从高三年级该学科成绩中任意抽取3名学生的成绩,求至少2名学生的成绩为优分的概率.
附:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体
是一个棱长为2的空心蔬菜大棚,由8个钢结构(地面没有)组合搭建而成的,四个侧面及顶上均被可采光的薄膜覆盖,已知
为柱
上一点(不在点
、
处),
(
),菜农需要在地面正方形
内画出一条曲线
将菜地分隔为两个不同的区域来种植不同品种的蔬菜以加强管理,现已知点
为地面正方形
内的曲线
上任意一点,设
、
分别为在
点处观测
和
的仰角.
![]()
(1)若
,请说明曲线
是何种曲线,为什么?
(2)若
为柱
的中点,且
时,请求出点
所在区域的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】辽宁号航母纪念章从2012年10月5日起开始上市,通过市场调查,得到该纪念章每1枚的市场价y(单位:元)与上市时间x(单位:天)的数据如下:
上市时间x天 | 8 | 10 | 32 |
市场价y元 | 82 | 60 | 82 |
(1)根据上表数据,从下列函数中选取一个恰当的函数描述辽宁号航母纪念章的市场价y与上市时间x的变化关系并说明理由:①
;②
;③
.
(2)利用你选取的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价格.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市环保部门对该市市民进行了一次动物保护知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参'与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:
组别 |
|
|
|
|
|
|
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 15 | 5 | 10 |
若规定问卷得分不低于70分的市民称为“动物保护关注者”,则山图中表格可得
列联表如下:
非“动物保护关注者” | 是“动物保护关注者” | 合计 | |
男 | 10 | 45 | 55 |
女 | 15 | 30 | 45 |
合计 | 25 | 75 | 100 |
(1)请判断能否在犯错误的概率不超过0.05的前提下认为“动物保护关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“动物保护达人”.现在从本次调查的“动物保护达人”中利用分层抽样的方法随机抽取6名市民参与环保知识问答,再从这6名市民中抽取2人参与座谈会,求抽取的2名市民中,既有男“动物保护达人”又有女“动物保护达人”的概率.
附表及公式:
,其中
.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,把满足条件
的所有数列
构成的集合记为
.
(1)若数列
通项为
,求证:
;
(2)若数列
是等差数列,且
,求
的取值范围;
(3)若数列
的各项均为正数,且
,数列
中是否存在无穷多项依次成等差数列,若存在,给出一个数列
的通项;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com