精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+2lnx,(a<0,a∈R)
(1)求f(x)的解析式;
(2)是否存在实数a,使得当x∈[-e,0)时,f(x)的最小值是4?如果存在,求出a的值;如果不存在,请说明理由.
分析:(1)设x∈[-e,0),利用函数为奇函数,得到f(-x)=-f(x),将f(-x)的值代入,求出f(x)在x∈[-e,0)的解析式.
(2)求出f′(x)=0的根,讨论根不在定义域内时,函数在定义域上递增,求出最小值,令最小值等于4,求a;根在定义域内,列出x,f′(x),f(x)d的变化情况表,求出函数的最小值,列出方程求a值.
解答:解:(1)设x=[-e,0),则-x∈(0,e]∴f(-x)=-ax+2ln(-x).∵f(x)是定义在[-e,0)∪(0,e],上的奇函数,∴f(x)=-f(-x)=ax-2ln(-x).
故函数f(x)的解析式为:f(x)=
ax-2ln(-x)x∈[-e,0)
ax+2lnx,x∈(0,e]

(2)假设存在实数a,使得当x∈(-e,0]时,f(x)=ax-2ln(-x)有最小值是3.
f′(x)=a-
2
x
=
ax-2
x

①当
2
a
≤-e,即-
2
e
≤a<0
时,
由于x∈[-e,0),则f'(x)≥0.故函数f(x)=ax-2ln(-x)是[-e,0)上的增函数.
∴所以f(x)min=f(-e)=-ae-2=4,解得a=-
6
e
<-
2
e
(舍去)
②当
2
a
>-e,即a<-
2
e
时,则

x (-e,
2
a
)
(
2
a
,0)
f'(x) - +
f(x)
f(x)min=f(
2
a
)=2-2ln(-
2
a
)=4
,解得a=-2e
综上所知,存在实数a=-2e,使得当x∈[-e,0)时,f(x)最小值4.
点评:解决是否存在这种探索性的题时,一般是假设存在,然后去求,求出则存在,求不出就不存在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案