精英家教网 > 高中数学 > 题目详情
已知双曲线x2-2y2=2的左、右两个焦点为F1,F2,动点P满足|PF1|+|PF2|=4.
(I)求动点P的轨迹E的方程;
(Ⅱ)设D(,0),过F2且不垂直于坐标轴的动直线l交轨迹E于A、B两点,若DA、DB为邻边的平行四边形为菱形,求直线l的方程.
【答案】分析:(I)因为动点P满足|PF1|+|PF2|=4,利用椭圆定义,可知动点P的轨迹为椭圆,且该椭圆以F1、F2为焦点,长轴为4,从而可求椭圆方程;
(Ⅱ)设出直线方程,代入椭圆方程,利用韦达定理,结合以DA、DB为邻边的平行四边形为菱形,利用向量知识,即可得到结论.
解答:解:(Ⅰ)双曲线的方程可化为,则|F1F2|=2  
∵|PF1|+|PF2|=4>|F1F2|=2 
∴P点的轨迹E是以F1、F2为焦点,长轴为4的椭圆         
由a=2,c=,∴b=1
∴所求方程为
(Ⅱ)设l的方程为,则k≠0
代入椭圆方程可得(1+4k2)x2-k2x+12k2-4=0,
设A(x1,y1)、B(x2,y2),则x1+x2=
∴y1+y2=k(x1+x2-)=
∵以DA、DB为邻边的平行四边形为菱形,
∴()⊥
∴()•=0
--=0

∴l的方程为
点评:本题考查双曲线的性质,考查椭圆的定义与标准方程,考查直线与椭圆的位置关系,考查向量知识的运用,考查韦达定理,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线x2-
y2a
=1的一条渐近线与直线x-2y+3=0垂直,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•淄博三模)已知双曲线x2-
y2
a
=1(a>0)
的一条渐近线与直线x-2y+3=0垂直,则该双曲线的离心率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)已知双曲线x2-
y2
m
=1
与抛物线y2=8x的一个交点为P,F为抛物线的焦点,若|PF|=5,则双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源:淄博三模 题型:单选题

已知双曲线x2-
y2
a
=1(a>0)
的一条渐近线与直线x-2y+3=0垂直,则该双曲线的离心率是(  )
A.
3
B.
5
C.
5
2
D.2
3

查看答案和解析>>

科目:高中数学 来源:嘉定区二模 题型:填空题

已知双曲线x2-
y2
a
=1
的一条渐进线与直线x-2y+3=0垂直,则a=______.

查看答案和解析>>

同步练习册答案