精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的前n项和为Sn=2•3n+k(k∈R,n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足an=4(5+k)anbn,Tn为数列{bn}的前n项和,求Tn
分析:(1)由sn和an的关系求解.(2)由an=4(5+k)anbn和第一问的结论求得bn,进而求Tn
解答:解:(1)由Sn=2•3n+k得:n≥2时,an=sn-sn-1=4×3n-1
a1=6+k=4
∴k=-2
∴an=4×3n-1
(2)由an=4(5+k)anbn和∴an=4×3n-1
bn=
n-1
43n-1

Tn=b1+b2+…+bn=
1
4
(
1
3
+
2
32
+…+
n-1
3n-1
)•(1)

3Tn=
3
4
(
1
3
+
2
32
+…+
n-1
3n-1
)•(2)

(2)-(1)整理得Tn=
3
16
-
2n+1
16•3n-1
点评:本题主要考查通项与前n项和之间的关系以及构造数列研究新问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案