精英家教网 > 高中数学 > 题目详情

如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.

(1)证明:DB=DC;

(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.

 

【答案】

(1)见解析   (2)

【解析】

(1)证明:连接DE,交BC于点G.

由弦切角定理得,

∠ABE=∠BCE.

而∠ABE=∠CBE,

故∠CBE=∠BCE,BE=CE.

又DB⊥BE,

所以DE为直径,

则∠DCE=90°,

由勾股定理可得DB=DC.

(2)解:由(1)知,∠CDE=∠BDE,DB=DC,

故DG是BC的中垂线,

所以BG=.

设DE的中点为O,连接BO,

则∠BOG=60°.

从而∠ABE=∠BCE=∠CBE=30°,

所以CF⊥BF,

故Rt△BCF外接圆的半径等于.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(选修4-1:几何证明选讲)
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.
(Ⅰ)证明:DB=DC;
(Ⅱ)设圆的半径为1,BC=
3
,延长CE交AB于点F,求△BCF外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求证:平面DAF⊥平面CBF;
(Ⅱ)求直线AB与平面CBF所成角的大小;
(Ⅲ)当AD的长为何值时,平面DFC与平面FCB所成的锐二面角的大小为60°?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB为圆O的直径,D为AB延长线上一点,直线DC切圆O于点C,∠DAC=30°,OD=10,则圆O的半径r=
5
5
,DC=
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•深圳一模)请从下面两题中选做一题,如果两题都做,以第一题的得分为最后得分.
(1)在极坐标系中,过圆ρ=4cosθ的圆心,且垂直于极轴的直线方程为
ρcosθ=2
ρcosθ=2

(2)如图,AB为⊙O的直径,弦AC、BD交于点P,若AB=3,CD=1,则sin∠APD=
2
2
3
2
2
3

查看答案和解析>>

同步练习册答案