精英家教网 > 高中数学 > 题目详情
(2007•闵行区一模)已知函数f(x)=x2+2x+1,如果使f(x)≤kx对任意实数x∈(1,m]都成立的m的最大值是5,则实数k=
36
5
36
5
分析:若f(x)≤kx对任意实数x∈(1,m]都成立,即x2+(2-k)x+1≤0对任意实数x∈(1,m]都成立,即(1,m]是不等式x2+(2-k)x+1≤0解集的一个子集,设不等式x2+(2-k)x+1≤0解集为a≤x≤b,则a≤1,b≥m,进而根据使f(x)≤kx对任意实数x∈(1,m]都成立的m的最大值是5,构造关于k的方程,解方程即可得到答案.
解答:解:设g(x)=x2+(2-k)x+1
设不等式g(x)≤0的解集为a≤x≤b.
则△=(2-k)2-4>=0,解得k≥4或k≤0
又∵函数f(x)=x2+2x+1,且f(x)<=kx对任意实数x属于(1,m]恒成立;
∴(1,m]⊆[a,b]
∴a≤1,b≥m
∴f(1)=4-k<0,解得k>4
m的最大值为b,所以有b=5.
即x=5是方程g(x)=0的一个根,代入x=5我们可以解得k=
36
5

故答案为:
36
5
点评:本题考查的知识点是二次函数在闭区间上的最值,二次函数的性质,其中将已知条件转化为(1,m]是不等式x2+(2-k)x+1≤0解集的一个子集,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•闵行区一模)已知数列{an}和{bn}的通项公式分别是an=
an2+2
bn2-n+3
bn=(1+
1
n
)bn
,其中a、b是实常数.若
lim
n→∞
an=2
lim
n→∞
bn=e
1
2
,且a,b,c成等比数列,则c的值是
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闵行区一模)已知函数f(x)=Asin(ωx+φ)+B(A>0,0<ω<2,|φ|<
π
2
)
的一系列对应值如下表:
x -
π
6
π
3
6
3
11π
6
3
17π
6
y -1 1 3 1 -1 1 3
(1)根据表格提供的数据求函数y=f(x)的解析式;
(2)(文)当x∈[0,2π]时,求方程f(x)=2B的解.
(3)(理)若对任意的实数a,函数y=f(kx)(k>0),x∈(a,a+
3
]
的图象与直线y=1有且仅有两个不同的交点,又当x∈[0,
π
3
]
时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闵行区一模)设等差数列{an}的前n项和为Sn,若a6+a14=20,则S19=
190
190

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闵行区一模)不等式|2x-3|<5的解是
(-1,4)
(-1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闵行区一模)方程9x+3x-2=0的解是
0
0

查看答案和解析>>

同步练习册答案