精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

1)当时,求曲线在点处的切线方程;

2时,求在区间上的最大值和最小值;

3)当时,若方程在区间上有唯一解,求的取值范围.

【答案】(1);(2最大值为,最小值为;(3

【解析】试题分析:(1)可得切线斜率,再由点斜式可得切线方程;

(2),可得所以在区间上单调递增,从而可得最值;

(3)当时, . 分析可知在区间上单调递减,且 所以存在唯一的,使,即,结合函数单调性可得解.

试题解析:

1)当时,

所以 .

又因为

所以曲线在点处的切线方程为.

2)当时,

所以

时,

所以.

所以在区间上单调递增

因此在区间上的最大值为,最小值为.

3时, .

因为 ,所以.

所以在区间上单调递减

因为

所以存在唯一的,使,即.

所以在区间上单调递增,在区间上单调递减

因为 ,又因为方程在区间上有唯一解,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC在内角ABC的对边分别为abc,已知a=bcosC+csinB.

)求B

)若b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图一块长方形区域ABCD,AD=2(km),AB=1(km).在边AD的中点O处,有一个可转动的探照灯,其照射角∠EOF始终为,设∠AOE=,探照灯O照射在长方形ABCD内部区域的面积为S.

(1)当0时,写出S关于的函数表达式;

(2)若探照灯每9分钟旋转“一个来回”(OEOA转到OC,再回到OA,称“一个来回”,忽略OEOAOC反向旋转时所用时间),且转动的角速度大小一定,设AB边上有一点G,且∠AOG,求点G在“一个来回”中,被照到的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱台中, 底面,平面平面的中点.

(1)证明:

(2)若,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足:对于任意实数都有恒成立,且当时,

(Ⅰ)判定函数的单调性,并加以证明;

(Ⅱ)设,若函数有三个零点从小到大分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若,求函数的单调区间;

(Ⅲ)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区工会利用 “健步行”开展健步走积分奖励活动会员每天走5千步可获积分30分(不足5千步不积分),每多走2千步再积20分(不足2千步不积分)记年龄不超过40岁的会员为类会员,年龄大于40岁的会员为类会员为了解会员的健步走情况,工会从两类会员中各随机抽取名会员,统计了某天他们健步走的步数,并将样本数据分为 九组,将抽取的类会员的样本数据绘制成频率分布直方图, 类会员的样本数据绘制成频率分布表图、表如下所示).

的值;

从该地区类会员中随机抽取名,设这名会员中健步走的步数在千步以上(含千步)的人数为,求的分布列和数学期望;

设该地区类会员和类会员的平均积分分别为,试比较的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C处的乙船,现乙船朝北偏东的方向即沿直线CB前往B处救援,则等于 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,且圆与圆存在公共点,则圆与直线的位置关系是(  )

A. 相切B. 相离C. 相交D. 相切或相交

查看答案和解析>>

同步练习册答案