【题目】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=2时,求不等式f(x)<g(x)的解集;
(2)设a>
,且当x∈[
,a]时,f(x)≤g(x),求a的取值范围.
科目:高中数学 来源: 题型:
【题目】已知等比数列{
}的前n项和为
,且满足2
=
+m(m∈R).
(Ⅰ)求数列{
}的通项公式;
(Ⅱ)若数列{
}满足
,求数列{
}的前n项和
.
【答案】(Ⅰ)
(Ⅱ)![]()
【解析】
(Ⅰ)法一:由前n项和与数列通项公式的关系可得数列的通项公式为
;
法二:由题意可得
,则
,据此可得数列的通项公式为
.
(Ⅱ)由(Ⅰ)可得
,裂项求和可得
.
(Ⅰ)法一:
由
得
,
当
时,
,即
,
又
,当
时符合上式,所以通项公式为
.
法二:
由
得![]()
从而有
,
所以等比数列公比
,首项
,因此通项公式为
.
(Ⅱ)由(Ⅰ)可得
,
,
.
【点睛】
本题主要考查数列前n项和与通项公式的关系,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.
【题型】解答题
【结束】
18
【题目】四棱锥S-ABCD的底面ABCD为直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD为正三角形.
(Ⅰ)点M为棱AB上一点,若BC∥平面SDM,AM=λAB,求实数λ的值;
(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为
(其中α为参数),曲线C2:(x﹣1)2+y2=1,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1的普通方程和曲线C2的极坐标方程;
(2)若射线θ=
(ρ>0)与曲线C1,C2分别交于A,B两点,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G为AD中点,F是CE的中点. ![]()
(1)证明:BF∥平面ACD;
(2)求平面BCE与平面ACD所成锐二面角的大小;
(3)求点G到平面BCE的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
![]()
由 列联表算得
参照附表,得到的正确结论是( ).
A. 在犯错误的概率不超过0.01的前提下认为“爱好该项运动与性别有关”
B. 在犯错误的概率不超过0.01的前提下认为“爱好该项运动与性别无关”
C. 在犯错误的概率不超过0.001的前提下,认为“爱好该项运动与性别有关”
D. 在犯错误的概率不超过0.001的前提下,认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
(a>0)的导函数y=f′(x)的两个零点为0和3.
(1)求函数f(x)的单调递增区间;
(2)若函数f(x)的极大值为
,求函数f(x)在区间[0,5]上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:①命题“若
,则
”的逆否命题为假命题:
②命题“若
,则
”的否命题是“若
,则
”;
③若“
”为真命题,“
”为假命题,则
为真命题,
为假命题;
④函数
有极值的充要条件是
或
.
其中正确的个数有( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com