【题目】某校高三实验班的60名学生期中考试的语文、数学成绩都在
内,其中语文成绩分组区间是:
,
,
,
,
.其成绩的频率分布直方图如图所示,这60名学生语文成绩某些分数段的人数
与数学成绩相应分数段的人数
之比如下表所示:
分组区间 |
|
|
|
|
|
|
|
|
|
| |
24 | 3 | ||||
数学人数 | 12 | 4 |
![]()
(1)求图中
的值及数学成绩在
的人数;
(2)语文成绩在
的3名学生均是女生,数学成绩在
的4名学生均是男生,现从这7名学生中随机选取4名学生,事件
为:“其中男生人数不少于女生人数”,求事件
发生的概率;
(3)若从数学成绩在
的学生中随机选取2名学生,且这2名学生中数学成绩在
的人数为
,求
的分布列和数学期望
.
【答案】(1)数学成绩在
的人数为8人(2)
(3)详见解析
【解析】
(1)由根据频率分布直方图的性质,求得
,再根据频率分布直方图数据,即可求解;
(2)由事件
可分为①2个男生,2个女生;②3个男生1个女生;③4个男生三种情况,即可求解相应的概率;
(3)由题意,得到
可能取值有
,求得相应的概率,求得随机变量的分布列,利用期望的公式,即可求解.
(1)由题意,根据频率分布直方图的性质,
可得
,解得
.
则语文成绩在
,
,
,
,
中的人数分别为
,
则数学成绩在
,
,
,
,
中的人数分别
为
,
所以数学成绩在
的人数为8人.
(2)从这7名学生中随机选取4名学生,事件
为:“其中男生人数不少于女生人数”,
可分为①2个男生,2个女生;②3个男生1个女生;③4个男生,三种情况:
所以事件
发生的概率
.
(3)由题意可知
可能取值有0,1,2.
,
,
,
的分布列为
| 0 | 1 | 2 |
|
|
|
|
所以
.
科目:高中数学 来源: 题型:
【题目】已知抛物线
(
),其准线方程
,直线
过点
(
),且与抛物线交于
、
两点,
为坐标原点.
(1)求抛物线方程,并注明:
的值与直线
倾斜角的大小无关;
(2)若
为抛物线上的动点,记
的最小值为函数
,求
的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)=ax﹣ex(a∈R),g(x)=
.
(Ⅰ)求函数f (x)的单调区间;
(Ⅱ)x0∈(0,+∞),使不等式f (x)≤g(x)﹣ex成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个调查学生记忆力的研究团队从某中学随机挑选100名学生进行记忆测试,通过讲解100个陌生单词后,相隔十分钟进行听写测试,间隔时间
(分钟)和答对人数
的统计表格如下:
时间 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
答对人数 | 98 | 70 | 52 | 36 | 30 | 20 | 15 | 11 | 5 | 5 |
| 1.99 | 1.85 | 1.72 | 1.56 | 1.48 | 1.30 | 1.18 | 1.04 | 0.7 | 0.7 |
时间
与答对人数
的散点图如图:
![]()
附:
,
,
,
,
,对于一组数据
,
,……,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.请根据表格数据回答下列问题:
(1)根据散点图判断,
与
,哪个更适宣作为线性回归类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果,建立
与
的回归方程;(数据保留3位有效数字)
(3)根据(2)请估算要想记住
的内容,至多间隔多少分钟重新记忆一遍.(参考数据:
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(0,-2),椭圆E:
(a>b>0)的离心率为
,F是椭圆E的右焦点,直线AF的斜率为
,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若定义域均为D的三个函数f(x),g(x),h(x)满足条件:对任意x∈D,点(x,g(x)与点(x,h(x)都关于点(x,f(x)对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=
,f(x)=2x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年双十一落下帷幕,天猫交易额定格在268(单位:十亿元)人民币(下同),再创新高,比去年218(十亿元)多了50(十亿元),这些数字的背后,除了是消费者买买买的表现,更是购物车里中国新消费的奇迹,为了研究历年销售额的变化趋势,一机构统计了2010年到2019年天猫双十一的销售额数据
(单位:十亿元).绘制如下表1:
表1
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
销售额 | 0.9 | 8.7 | 22.4 | 41 | 65 | 94 | 132.5 | 172.5 | 218 | 268 |
根据以上数据绘制散点图,如图所示.
![]()
把销售超过100(十亿元)的年份叫“畅销年”,把销售额超过200(十亿元)的年份叫“狂欢年”,从2010年到2019年这十年的“畅销年”中任取2个,求至少取到一个“狂欢年”的概率.
参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计公式分别为
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有10位外国人,其中关注此次大阅兵的有8位,若从这10位外国人中任意选取3位做一次采访,则被采访者中至少有2位关注此次大阅兵的概率为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com