精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,P、Q分别是棱AA1、CC1的中点,则过点B、P、Q的截面是(  )
分析:先由共面公理证明四点P、B、Q、D1共面,再证明其是一个菱形即可.
解答:解:如图所示:
连接PD1、QD1.下面证明四边形BPD1Q是菱形.
取棱BB1的中点M,连接A1M、QM,则MQ
.
B1C1
.
A1D1

∴四边形A1MQD1是平行四边形,∴A1M
.
D1Q

同理可证:四边形A1MBP是一个平行四边形,∴A1M
.
PB

D1Q
.
PB

∴四边形PBQD1是平行四边形.
由Rt△ABP≌Rt△A1D1P,可得PB=PD1
∴四边形PBQD1是菱形.
故选B
点评:熟练掌握共面公理和菱形的定义及三角形全等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为
①③④
.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E为D′C′的中点,则二面角E-AB-C的大小为
45°
45°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点. 
(1)若M为BB′的中点,证明:平面EMF∥平面ABCD.
(2)求异面直线EF与AD′所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在正方体ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,则B1H与平面AD1C的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交棱AA′于E,交棱CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E有可能是菱形;
④四边形BFD′E有可能垂直于平面BB′D.
其中所有正确结论的序号是
 

查看答案和解析>>

同步练习册答案