精英家教网 > 高中数学 > 题目详情

【题目】在单位圆Ox2+y21上任取一点Pxy),圆Ox轴正向的交点是A,设将OA绕原点O旋转到OP所成的角为θ,记xy关于θ的表达式分别为xfθ),ygθ),则下列说法正确的是(  )

A.xfθ)是偶函数,ygθ)是奇函数

B.xfθ)在为增函数,ygθ)在为减函数

C.fθ+gθ≥1对于恒成立

D.函数t2fθ+g2θ)的最大值为

【答案】AC

【解析】

,由题可知,,根据正弦函数和余弦函数的奇偶性,可判断选项

,根据正弦函数和余弦函数的单调性,可判断选项

,先利用辅助角公式可得,再结合正弦函数的值域即可得解;

,先对函数求导,从而可知函数的单调性,进而可得当时,函数取得最大值,结合正弦的二倍角公式,代入进行运算即可得解.

解:由题可知,,即正确;

上为增函数,在上为减函数;上为增函数,即错误;

,即正确;

函数

,则;令,则

函数上单调递增,在上单调递减,当时,函数取得极大值,为

又当时,,所以函数的最大值为,即错误.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点的五面体中,平面平面,四边形为平行四边形,且.

1)求证:

2)若,直线与平面所成角为60°,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是等腰梯形,是等边三角形,点上,且

1)证明://平面

2)若平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在几何体中,如图,四边形为平行四边形,,平面平面平面

1)若三棱锥的体积为1,求

2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国新型冠状病毒肺炎疫情期间,以网络购物和网上服务所代表的新兴消费展现出了强大的生命力,新兴消费将成为我国消费增长的新动能.某市为了了解本地居民在20202月至3月两个月网络购物消费情况,在网上随机对1000人做了问卷调查,得如下频数分布表:

网购消费情况(元)

频数

300

400

180

60

60

1)作出这些数据的频率分布直方图,并估计本市居民此期间网络购物的消费平均值;

2)在调查问卷中有一项是填写本人年龄,为研究网购金额和网购人年龄的关系,以网购金额是否超过4000元为标准进行分层抽样,从上述1000人中抽取200人,得到如下列联表,请将表补充完整并根据列联表判断,在此期间是否有95%的把握认为网购金额与网购人年龄有关.

网购不超过4000

网购超过4000

总计

40岁以上

75

100

40岁以下(含40岁)

总计

200

参考公式和数据:.(其中为样本容量)

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体ABCD中,ABCBCD均是边长为1的等边三角形,已知四面体ABCD的四个顶点都在同一球面上,且AD是该球的直径,则四面体ABCD的体积为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,在底面上的射影为于点.

1)求证:平面平面

2)若,求直线与平面所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是直角梯形,且是正三角形,的中点.

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天津市某中学为全面贯彻五育并举,立德树人的教育方针,促进学生各科平衡发展,提升学生综合素养.该校教务处要求各班针对薄弱学科生成立特色学科兴趣学习小组”(每位学生只能参加一个小组),以便课间学生进行相互帮扶.已知该校某班语文数学英语三个兴趣小组学生人数分别为101015.经过一段时间的学习,上学期期中考试中,他们的成绩有了明显进步.现采用分层抽样的方法从该班的语文,数学,英语三个兴趣小组中抽取7人,对期中考试这三科成绩及格情况进行调查.

1)应从语文,数学,英语三个兴趣小组中分别抽取多少人?

2)若抽取的7人中恰好有5人三科成绩全部及格,其余2人三科成绩不全及格.现从这7人中随机抽取4人做进一步的调查.

①记表示随机抽取4人中,语文,数学,英语三科成绩全及格的人数,求随机变量的分布列和数学期望;

②设为事件抽取的4人中,有人成绩不全及格,求事件发生的概率.

查看答案和解析>>

同步练习册答案