精英家教网 > 高中数学 > 题目详情
对于函数f(x)=x
1
2
定义域内的任意x1,x2且x1≠x2,给出下列结论:
①f(x1+x2)=f(x1)•f(x2);  
②f(x1•x2)=f(x1)•f(x2);
f(x1)-f(x2)
x1-x2
>0
;         
f(
x1+x2
2
)>
f(x1)+f(x2)
2
,其中正确结论的个数为(  )
分析:根据幂函数的性质,代入分别进行判断即可.
解答:解:①当x1=1,x2=2时,f(x1+x2)=f(2)=
2
,f(x1)•f(x2)=
1
×
1
=1
,∴①错误;  
②f(x1•x2)=
x1x2
=
x1
x2
=f(x1)•f(x2),∴②正确.
③满足条件
f(x1)-f(x2)
x1-x2
>0
的函数为增函数,∴函数f(x)=x
1
2
为增函数,∴③正确;         
④满足条件f(
x1+x2
2
)>
f(x1)+f(x2)
2
的函数为凸函数,∴④正确.
故②③④正确.
故选:C.
点评:本题主要考查幂函数的图象和性质,要求熟练掌握指数幂的运算,和幂函数的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:013

下列说法正确的是

[  ]

A.对于函数f(x),如果存在一个常数T,使得定义域内的每一个x值都满足f(x+T)=f(x),则函数f(x)叫做周期函数

B.对于函数f(x),如果存在一个非零常数T,使得定义域内存在一个x满足于f(x+T)=f(x),则f(x)叫做周期函数

C.对于函数f(x),如果存在一个非零常数T,使得定义域内存在若干个x满足f(x+T)=f(x),则f(x)叫做周期函数

D.对于函数f(x),如果存在一个非零常数T,使得定义域的每一个x值满足f(x+T)=f(x),则f(x)叫做周期函数

查看答案和解析>>

科目:高中数学 来源: 题型:013

下列说法正确的是

[  ]

A.对于函数f(x),如果存在一个常数T,使得定义域内的每一个x值都满足f(x+T)=f(x),则函数f(x)叫做周期函数

B.对于函数f(x),如果存在一个非零常数T,使得定义域内存在一个x满足于f(x+T)=f(x),则f(x)叫做周期函数

C.对于函数f(x),如果存在一个非零常数T,使得定义域内存在若干个x满足f(x+T)=f(x),则f(x)叫做周期函数

D.对于函数f(x),如果存在一个非零常数T,使得定义域的每一个x值满足f(x+T)=f(x),则f(x)叫做周期函数

查看答案和解析>>

科目:高中数学 来源:四川省成都树德中学2012届高考适应考试(一)数学试题文理科 题型:022

对于函数f(x),定义:若存在非零常数M,T,使函数f(x)对定义域内的任意x,都满足f(x+T)-f(x)=M,则称函数y=f(x)是准周期函数,非零常数T称为函数y=f(x)的一个准周期.如函数f(x)=2x+sinx是以T=2π为一个准周期且M=4π的准周期函数.下列命题:

①2π是函数f(x)=sinx的一个准周期;

②f(x)=x+(-1)x(x∈z)是以T=2为一个准周期且M=2的准周期函数;

③函数f(x)=kx+b+Asin(wx+φ)(k≠0,w>0)是准周期函数;

④如果f(x)是一个一次函数与一个周期函数的和的形式,则f(x)一定是准周期函数;

⑤如果f(x+1)=-f(x)则函数h(x)=x+f(x)是以T=2为一个准周期且M=4的准周期函数;其中的真命题是________

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案