【题目】在xOy平面上,将双曲线的一支
及其渐近线
和直线
、
围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周所得的几何体为
,过
作
的水平截面,计算截面面积,利用祖暅原理得出
体积为________
![]()
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分) ![]()
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体
中,平面
平面
,四边形
为正方形,四边形
为梯形,且
,
,
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)在线段
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.![]()
(Ⅰ)求证:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为
,求线段AH的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现在,很多人都喜欢骑“共享单车”,但也有很多市民并不认可.为了调查人们对这种交通方式的认可度,某同学从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20名市民,得到了一个市民是否认可的样本,具体数据如下
列联表:
![]()
附:
,
.
![]()
根据表中的数据,下列说法中,正确的是( )
A. 没有95% 以上的把握认为“是否认可与城市的拥堵情况有关”
B. 有99% 以上的把握认为“是否认可与城市的拥堵情况有关”
C. 可以在犯错误的概率不超过0.01的前提下认为“是否认可与城市的拥堵情况有关”
D. 可以在犯错误的概率不超过0.025的前提下认为“是否认可与城市的拥堵情况有关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知直线
的参数方程为
(
为参数).以坐标原点
为极点,以坐标原点
为极点,
轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求直线
的普通方程和曲线
的直角坐标方程;
(Ⅱ)若曲线
上的点到直线
的最大距离为6,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是菱形,对角线
,
交于点
.
![]()
(Ⅰ)若
,求证:
平面
;
(Ⅱ)若平面
平面
,求证:
;
(Ⅲ)在棱
上是否存在点
(异于点
),使得
平面
?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究机构对高三学生的记忆力
和判断力
进行统计分析,得下表数据:
![]()
(1)请根据上表提供的数据,用相关系数
说明
与
的线性相关程度;(结果保留小数点后两位,参考数据:
)
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(3)试根据求出的线性回归方程,预测记忆力为9的同学的判断力.
参考公式:
,
;相关系数
;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com