精英家教网 > 高中数学 > 题目详情

为常数,函数,若上是增函数,则的取值范围是___________.

 

【答案】

【解析】

试题分析:函数,若上是增函数,则可之函数的对称轴为x=2,那么可知向左平移a个单位后的为增区间,则可知2-a ,故答案为

考点:函数的单调性

点评:解决的关键是对于函数的单调性的运用,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f1(x)=lg|x-p1|,f2(x)=lg(|x-p2|+2)(x∈R,p1,p2为常数)
函数f(x)定义为对每个给定的实数x(x≠p1),f(x)=
f1(x)f1(x)≤f2(x)
f2(x)f2(x)≤f1(x)

(1)当p1=2时,求证:y=f1(x)图象关于x=2对称;
(2)求f(x)=f1(x)对所有实数x(x≠p1)均成立的条件(用p1、p2表示);
(3)设a,b是两个实数,满足a<b,且p1,p2∈(a,b),若f(a)=f(b)求证:函数f(x)在区间[a,b]上单调增区间的长度之和为
b-a
2
.(区间[m,n]、(m,n)或(m,n]的长度均定义为n-m)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄浦区二模)设a为常数,函数f(x)=x2-4x+3,若f(x+a)在[0,+∞)上是增函数,则a的取值范围是
[2,+∞)
[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆模拟)设函数f(x)=(x-2)2+blnx,其中b为常数.
(Ⅰ)若函数f(x)在定义域上单调递增,求b的取值范围;
(Ⅱ)若b≤0,求函数f(x)的极值点;
(Ⅲ)当b=-6时,利用函数f(x)的性质证明:对任意大于1的正整数n,不等式
1
6n2
-
1
6
<ln(2n+1)-lnn<
1
6n2
-
1
6
+ln3
恒成立.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三11月练习数学试卷 题型:解答题

对于三次函数

定义:(1)设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”;

定义:(2)设为常数,若定义在上的函数对于定义域内的一切实数,都有成立,则函数的图象关于点对称.

己知,请回答下列问题:

(1)求函数的“拐点”的坐标

(2)检验函数的图象是否关于“拐点”对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)

(3)写出一个三次函数,使得它的“拐点”是(不要过程)

 

查看答案和解析>>

同步练习册答案