精英家教网 > 高中数学 > 题目详情
(2012•广东模拟)设奇函数f(x)对任意x∈R都有f(x)=f(x-1)+
1
2

(1)求f(
1
2
)
f(
k
n
)+f(
n-k
n
)(k=0,1,2,…,n)
的值;
(2)数列{an}满足:an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
-f(
1
2
)
,数列{an}是等差数列吗?请给予证明;
(3)设m与k为两个给定的不同的正整数,{an}是满足(2)中条件的数列,
证明:
s
n=1
|
(m+1)nan+1
-
(kn+n+k+1)an
|<(
s+1
2
)
2
|
m
-
k
|
(s=1,2,…).
分析:(1)直接根据f(x)=f(x-1)+
1
2
,且f(x)是奇函数把
1
2
代入即可求出f(
1
2
)
;再结合奇函数得到f(x)+f(1-x)=
1
2
;把x=
k
n
代入即可得到f(
k
n
)+f(
n-k
n
)(k=0,1,2,…,n)
的值;
(2)先设sn=f(0)+f(
1
n
)+…+f(
n-1
n
)+f(1)
,利用倒序相加法结合第一问的结论,求出sn=
n+1
4
,进而求出数列{an}的通项公式,再根据定义即可证得数列{an}是等差数列;
(3)先根据第一问的结论把问题转化,再利用基本不等式对其放缩即可得到结论.
解答:解:(1)∵f(x)=f(x-1)+
1
2
,且f(x)是奇函数
f(
1
2
)=f(
1
2
-1)+
1
2
=f(-
1
2
)+
1
2
=-f(
1
2
)+
1
2

2f(
1
2
)=
1
2
,故f(
1
2
)=
1
4
…(2分)
因为f(x)=f(x-1)+
1
2
=-f(1-x)+
1
2
,所以f(x)+f(1-x)=
1
2

x=
k
n
,得f(
k
n
)+f(1-
k
n
)=
1
2
,即f(
k
n
)+f(
n-k
n
)=
1
2
.…(4分)
(2)设sn=f(0)+f(
1
n
)+…+f(
n-1
n
)+f(1)

sn=f(1)+f(
n-1
n
)+…+f(
1
n
)+f(0)

两式相加2sn=[f(0)+f(1)]+[f(
1
n
)+f(
n-1
n
)]+…+[f(1)+f(0)]=
n+1
2

所以sn=
n+1
4
,…(6分)
an=sn-f(
1
2
)=
n+1
4
-
1
4
=
n
4
,n∈N*
…(7分)
an+1-an=
n+1
4
-
n
4
=
1
4
.故数列{an}是等差数列.…(8分)
(3)∵
s
n=1
|
(m+1)nan+1
-
(kn+n+k+1)an
|

=
s
n=1
|
(m+1)n 
(n+1)
4
-
(k+1)(n+1)
n
4
|

=
1
2
|
m+1
-
k+1
|
s
n=1
n(n+1)

要证:
s
n=1
|
(m+1)nan+1
-
(kn+n+k+1)an
|<(
s+1
2
)
2
|
m
-
k
|
(s=1,2,…)
即 
1
2
|
m+1
-
k+1
|
s
n=1
n(n+1)
<(
s+1
2
)2|
m
-
k
|
…(10分)
n×(n+1)
n+n+1
2
=
2n+1
2

1×2
+
2×3
+…+
s×(s+1)
3
2
+
5
2
+…+
2s+1
2
=
s(3+2s+1)
2
2
=
s2+2s
2
(s+1)2
2

s
n=1
n(n+1)
(s+1)2
2
,从而
1
2
s
n=1
n(n+1)
<(
s+1
2
)2
…(12分)
又∵|
m+1
-
k+1
|<|
m
-
k
|
恒成立,
所以有
1
2
|
m+1
-
k+1
|
s
n=1
n(n+1)
<(
s+1
2
)2|
m
-
k
|
恒成立
s
n=1
|
(m+1)nan+1
-
(kn+n+k+1)an
|<(
s+1
2
)
2
|
m
-
k
|
(s=1,2,…)…(14分)
点评:本题主要考察数列与不等式的综合问题.解决本题第一问的关键在于利用奇函数的性质得到f(x)+f(1-x)=
1
2
.而解决第二问的关键在于用到了倒序相加求和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•广东模拟)(几何证明选讲选做题)如图,点M为⊙O的弦AB上的一点,连接MO.MN⊥OM,MN交圆于N,若MA=2,MB=4,则MN=
2
2
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东模拟)甲、乙两人各射击一次,击中目标的概率分别是
2
3
3
4
假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响.
(1)求甲射击3次,至少1次未击中目标的概率;
(2)假设某人连续2次未击中目标,则停止射击,问:乙恰好射击4次后,被中止射击的概率是多少?
(3)设甲连续射击3次,用ξ表示甲击中目标时射击的次数,求ξ的数学期望Eξ.(结果可以用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东模拟)等差数列{an}中,已知a3=5,a2+a5=12,an=29,则n为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东模拟)等比数列{an}中,a3=2,a7=8,则a5=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东模拟)已知实数x,y满足约束条件
x≥1
y≤1
x-y≤0
’则z=2x-y的取值范围是(  )

查看答案和解析>>

同步练习册答案