【题目】正方体
的直观图如图所示:
![]()
(1)判断平面
与平面
的位置关系,并证明你的结论.
(2)证明:直线
平面
.
(3)若
,求点
到面
的距离.
科目:高中数学 来源: 题型:
【题目】4月23日是“世界读书日”,某中学开展了一系列的读书教育活动.学校为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一个读书小组)学生抽取12名学生参加问卷调查.各组人数统计如下:
小组 | 甲 | 乙 | 丙 | 丁 |
人数 | 12 | 9 | 6 | 9 |
(1)从参加问卷调查的12名学生中随机抽取2人,求这2人来自同一个小组的概率;
(2)从已抽取的甲、丙两个小组的学生中随机抽取2人,用
表示抽得甲组学生的人数,求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
的部分图象如图所示,点A,B,C在图象
上,
,
,并且
轴
![]()
(1)求
和
的值及点B的坐标;
(2)若
,且
,求
的值;
(3)将函数
的图象上各点的纵坐标变为原来的
倍,横坐标不变,再将所得图象各点的横坐标变为原来的
倍,纵坐标不变,最后将所得图象向右平移
个单位,得到
的图象,若关于x的方程
在区间
上有两个不同解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
.
(1)若直线
过点
且被圆
截得的弦长为2,求直线
的方程;
(2)从圆
外一点
向圆
引一条切线,切点为
为坐标原点,满足
,求点
的轨迹方程及
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.
(Ⅰ)求A∩B,(UA)∪(UB);
(Ⅱ)设集合C={x|m+1<x<2m-1},若B∩C=C,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
、
是异面直线,给出下列结论:
①一定存在平面
,使直线
平面
,直线
平面
;
②一定存在平面
,使直线
平面
,直线
平面
;
③一定存在无数个平面
,使直线
与平面
交于一个定点,且直线
平面
.
则所有正确结论的序号为( )
A.①②B.②C.②③D.③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学届的震动。在1859年的时候,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想。在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字
的素数个数大约可以表示为
的结论。若根据欧拉得出的结论,估计1000以内的素数的个数为_________(素数即质数,
,计算结果取整数)
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com